• Q345B Material High  Quality  Angle  Bar System 1
  • Q345B Material High  Quality  Angle  Bar System 2
  • Q345B Material High  Quality  Angle  Bar System 3
Q345B Material High  Quality  Angle  Bar

Q345B Material High Quality Angle Bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
2000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Angle  Steel  great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

 

Product Advantages:

OKorder's Angle  Steelare durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

 

 

Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25

 

Alloy No

Grade

Element (%)

C

Mn

S

P

Si

 

 

 

 

 

 

 

Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3

 

 

 

 

 

 

 

Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)

 

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

 

Q235

B

375--500

26

25

24

23

Packaging & Delivery of Angle Bar

Packaging Detail: All goods are packed in bundle with steel strips and shipped by break bulk vessel or container (depend on target market and different ports)

Delivery Detail: 45 days

Trade terms: FOB, CFR, CIF

MOQ: 25 tons per specification; we can negotiate the quantity if the specification is normal or we have stock of one specification.

Weight: Theprice invoicing on theoretical weight basis or actual weight basis depends on customer’s request.

Shipment: The shipment of bulk break or container is depends on customer’s request and the situation of the port of destination.

Documents given: Full set of original clean on board bill of lading; Original signed commercial invoice; Original packing list; Policy of insurance; Certificate of origin and what the target market needs.

 

FAQ:

Q1 How soon can we receive the product after purchase?

A1 Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

 

Images:

Q: How do steel angles contribute to sustainable transportation infrastructure?
There are several ways in which steel angles contribute to sustainable transportation infrastructure. To begin with, steel angles are essential in building bridges and highways. Their strength and durability make them perfect for supporting heavy loads and enduring the harsh conditions that transportation infrastructure faces. Consequently, structures constructed with steel angles have a longer lifespan, reducing the need for frequent repairs or replacements. This not only saves money but also lessens the environmental impact associated with the production and disposal of construction materials. Furthermore, the use of steel angles in the construction of transportation infrastructure allows for more efficient designs. Engineers can create innovative and lightweight structures with the versatility of steel angles, resulting in the requirement of less material overall. This leads to reduced energy consumption during the construction process and decreased emissions during transportation and installation. Moreover, steel angles are recyclable. They can be easily recycled and utilized to manufacture new steel products when they reach the end of their lifespan. This lessens the demand for raw materials and minimizes waste sent to landfills. The recycling process also requires less energy and emits fewer greenhouse gases compared to the production of new steel, making it an environmentally friendly choice. Additionally, steel angles can contribute to sustainable transportation infrastructure by facilitating the integration of sustainable technologies. They can support solar panels or wind turbines, enabling the generation of clean energy to power transportation systems. By incorporating renewable energy sources into infrastructure projects, the reliance on fossil fuels can be reduced, resulting in decreased greenhouse gas emissions and a more sustainable transportation system. In conclusion, steel angles have a crucial role to play in sustainable transportation infrastructure. Their strength, durability, recyclability, and ability to support sustainable technologies make them an environmentally friendly choice. By incorporating steel angles in the construction of bridges, highways, and other transportation structures, we can create a more sustainable and resilient transportation system that reduces the environmental impact and promotes a greener future.
Q: How do you determine the required angle size for a specific application?
To determine the required angle size for a specific application, you need to consider factors such as the purpose of the application, the type of material being used, and the desired outcome. It is important to analyze the application's requirements, consult relevant guidelines or standards, and consider any potential safety or functional considerations. Additionally, conducting tests or simulations can help determine the appropriate angle size for optimal performance and efficiency in the given application.
Q: Are there any limitations on the length-to-thickness ratio of steel angles?
Steel angles have limitations on their length-to-thickness ratio, which is also known as the slenderness ratio. This ratio is crucial in determining the structural stability and load-bearing capacity of steel angles. To calculate the slenderness ratio, divide the angle's length by its thickness. In general, steel angles with a higher length-to-thickness ratio are more prone to buckling or failure when subjected to compressive loads. To maintain structural integrity, there are industry standards and guidelines that define the maximum slenderness ratios for steel angles. The specific limitations on the length-to-thickness ratio of steel angles vary based on factors such as the steel type, angle cross-sectional shape, applied load, and intended use. These limitations are typically outlined in engineering codes and standards like the American Institute of Steel Construction (AISC) or Eurocode, which provide design guidelines for various structural components, including steel angles. Adhering to these limitations is crucial to prevent structural failures and ensure the safety and performance of steel angles in different applications. Structural engineers and designers should consult the relevant codes and standards to determine the appropriate length-to-thickness ratio for specific steel angle designs.
Q: How do you calculate the buckling strength of a steel angle?
To calculate the buckling strength of a steel angle, several factors need to be considered. The buckling strength refers to the ability of the angle to resist buckling or collapse under applied loads. Firstly, the geometry of the steel angle must be determined. This includes the dimensions of the angle, such as the length of the legs and the thickness of the steel. Additionally, the cross-sectional properties, such as the moment of inertia and the section modulus, need to be calculated. Next, the effective length of the angle needs to be determined. The effective length is a measure of how restrained the angle is against buckling. It depends on factors such as the boundary conditions and the connection details. The effective length can be different for different modes of buckling, such as flexural or torsional buckling. Once the effective length is determined, the critical buckling load can be calculated using an appropriate buckling equation. There are several buckling equations available, depending on the boundary conditions and the mode of buckling. For example, the Euler buckling equation can be used for long, slender angles subjected to axial compression. Other equations, such as the Johnson buckling equation, may be used for more complex loading scenarios. The critical buckling load can then be converted to an allowable stress using a suitable safety factor. The safety factor accounts for uncertainties in the calculation and ensures that the angle can safely carry the applied load without buckling. The safety factor is typically specified by design codes or industry standards. In summary, calculating the buckling strength of a steel angle involves determining the geometry and effective length of the angle, applying an appropriate buckling equation, and converting the critical load to an allowable stress using a safety factor. It is important to consult relevant design codes and standards to ensure accurate and safe calculations.
Q: Are steel angles suitable for scaffolding?
Yes, steel angles are suitable for scaffolding. Steel angles are strong and durable, making them an ideal choice for supporting heavy loads and providing stability on construction sites. They can be easily connected and assembled to create a stable framework for workers to access higher levels during construction or maintenance tasks. Additionally, steel angles are versatile, allowing for various configurations and adjustments to accommodate different project requirements. Overall, steel angles are a reliable and commonly used component in scaffolding systems.
Q: What are the common surface treatments for steel angles to enhance corrosion resistance?
The common surface treatments for steel angles to enhance corrosion resistance include galvanizing, painting, and powder coating.
Q: What are the different methods for painting steel angles?
There are various approaches to painting steel angles, depending on the desired outcome and project conditions. Some commonly used methods include: 1. Applying with a brush: This traditional method involves using a paintbrush to directly apply paint onto the steel angle's surface. It offers greater control and precision, especially for smaller or intricate areas. 2. Utilizing spray application: Spray painting is favored for large-scale or industrial projects. It entails using a paint sprayer to evenly distribute paint onto the steel angle. This method is quicker and more efficient than brush application, resulting in a smooth, uniform finish. 3. Employing powder coating: This method involves applying a dry powder to the steel angle and then curing it under heat. The result is a durable and visually appealing finish. Powder coating is known for its resistance to chipping, scratching, and fading, making it ideal for outdoor applications or high-traffic areas. 4. Using electrostatic painting: Electrostatic painting employs an electric charge to attract paint particles to the steel angle. This technique ensures even coverage, reduces overspray, and yields a smooth and long-lasting finish. It is commonly used for large or complex surfaces due to its superior adhesion and coverage. 5. Opting for galvanizing: Galvanizing is a unique method used to protect steel angles from corrosion. It involves coating the steel angle with a layer of zinc through a hot-dip or electroplating process. Galvanized steel angles are highly durable and resistant to rust, making them suitable for outdoor or high-moisture environments. While galvanizing does not provide a specific color or aesthetic finish, the zinc coating can be painted over if desired. When selecting a painting method for steel angles, it is crucial to consider factors such as the desired appearance, durability, environmental conditions, and project specifications. Seeking guidance from a professional or adhering to the manufacturer's recommendations can help ensure the most suitable method is chosen for each unique project.
Q: How do you prevent steel angles from bending under load?
In order to prevent steel angles from bending under load, several important measures can be taken: 1. Choose the appropriate size and material for the angle: It is important to select a steel angle that is of sufficient size and material strength to withstand the expected load. Seeking guidance from structural engineering guidelines or professionals can help determine the correct dimensions and material composition for the specific application. 2. Strengthen the angle: Enhance the strength of the steel angle by adding additional support or reinforcement. This can be achieved through techniques such as welding extra plates to the angle, utilizing gussets or stiffeners, or incorporating diagonal bracing. These reinforcements help distribute the load more evenly and reduce the likelihood of bending. 3. Increase the thickness: If possible, increasing the thickness of the steel angle can improve its ability to bear loads. A thicker angle will have greater resistance to bending and deformation under load. 4. Ensure proper installation: It is crucial to install the steel angles correctly and securely in order to maximize their resistance to bending. This involves using appropriate fasteners, such as bolts or welds, and following proper installation techniques. 5. Avoid excessive loads: Preventing steel angles from bending under load also requires careful consideration of the maximum load they will encounter. It is important to avoid overloading the angles beyond their design capacity, as this significantly increases the risk of bending or failure. 6. Regular inspections: Regularly inspect the steel angles for any signs of bending, cracking, or deformation. Prompt identification of potential issues allows for timely maintenance or reinforcement, preventing further damage or accidents. To ensure the proper design and implementation of these measures, it is crucial to consult with a qualified structural engineer or professional experienced in steel fabrication.
Q: Are steel angles suitable for corrosive environments?
No, steel angles are not suitable for corrosive environments as they are prone to rust and corrosion when exposed to moisture or certain chemicals.
Q: Can steel angles be drilled or machined?
Yes, steel angles can be drilled or machined. Steel angles are commonly used in construction and manufacturing industries due to their strength and durability. They can be easily drilled or machined to create holes or cut into specific shapes or sizes. However, it is important to use appropriate tools and techniques when working with steel angles as they are made of a hard material that requires high-speed drilling or machining equipment. Additionally, using lubricants or coolant during the drilling or machining process can help to reduce friction and heat buildup, ensuring a smooth and efficient operation.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords