• Monolithic High Temperature Castable Refractory Cement for Iron and Steel Industry System 1
  • Monolithic High Temperature Castable Refractory Cement for Iron and Steel Industry System 2
  • Monolithic High Temperature Castable Refractory Cement for Iron and Steel Industry System 3
  • Monolithic High Temperature Castable Refractory Cement for Iron and Steel Industry System 4
  • Monolithic High Temperature Castable Refractory Cement for Iron and Steel Industry System 5
Monolithic High Temperature Castable Refractory Cement for Iron and Steel Industry

Monolithic High Temperature Castable Refractory Cement for Iron and Steel Industry

Ref Price:
get latest price
Loading Port:
Dalian
Payment Terms:
TT or LC
Min Order Qty:
23 m.t.
Supply Capability:
60000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Refractory Plants

Our plant is one of the research institutes on refractory materials in CNBM. It was set up in 2001. Taking the advantages of combining research,process,marketing and technical service,CNBM supply not only first-class refractory materials but also supply distinctive technical services.

·17 plants in different cities.
·Annual output is 5000,000 tons per year.
·ISO 9001:2008 certificated
·The products cover the refractory area of steel-making, cement, non-ferrous, glass, ceramic and others.


Physical And Chemical Indicators For Castable

                                 Brand
Properties
HCA-180 HCA-170 HCA-160 HCA-150 HCA-140 
ºC
Application Limit Temp
1,8001,7001,6001,5001,400

Bulk Density (g/cm3)
2.952.452.302.152.10
(%)Water Required for Casting8-1110-1410-1411-1511-15

CCS/MOR
(MPa)
at110ºCx24h 60(10)45(8.5)40(8)40(8)35(6)
at1,200ºCx3h 55(9.5)50(9)45(8.5)50(9)40(8)
at1,400ºCx3h 80(15)55(10)50(9)55(9.5)45(8.5)
at1,300ºC 
(%) Permanent Linear Changeat110ºCx24h -0.03-0.06-0.06-0.06-0.06
at1,200ºCx3h -0.1-0.2-0.2-0.15-0.15
at1,400ºCx3h +0.4-0.3-0.2-0.3-0.4
at 1,300ºC
(%) Chemical AnalysisAl2039176635248
SiO21.515274044

 

High Temperature Castable Refractory Cement Castable

High Temperature Castable Refractory Cement Castable

Features Of Castable

  • High refractoriness, High refractoriness under load

  • High density, low porosity

  • Good slag resistance and corrosion resistance

  • High strength and wear resistance

  • Good resistance to flake performance

  • Good thermal shock stability

  • Scouring resistance

  • Good hot strength.

Applications Of Castable

  • Nonferrous Metal Furnace

  • Various Incinerator

  • Reheating Furnace

  • EAF, Ladle, Tundish, etc.

Specifications Of Castable

  • It is widely used in key area of linings in metallurgical industry, petrochemical industry, power plant, construction field and other industries. Especially  for the areas where easily worn and broken

Company Profile

CNBM INTERNATIONAL CORPORATION

Build your world with our materials.

We are a primary subsidiary of China National Building Material Group Co., Ltd.

CNBM Group is a central government-owned enterprise and a Fortune Global 500 company (Ranking 203th in 2019). It is the largest building material manufacturer and service provider in the world, with 15 publicly-listed companies and over 180,000 employees (2019). We have more than 300 factory plants in China. For the refractory, we are top 3 in China. We have more than 17 plants in different cities.

 

Proprietary Technology & Patented Products
Refractory technology
All process are conform to ISO9001 quality control systems

(1)The test of raw materials
★For all raw materials, the purchase department give the test report to the quality supervision department.

(2)The control of production
★Each batch products will be tested
★The quality supervision department record all test result.

(3)Test Before Production
★Before packing, the quality supervision department test the chemical content and physical 
★Only quality products can be delivery.
★The delivery department check the package, quantity, name, code, production date, etc.

(4)Quality Traceability Analysis
★Track the products after using and get the feedback of performance.

If customer required, we will give the customer technical solutions and also improve the products.

Damage Mechanism Analysis and Improvement
★ For the maintenance project, CNBM will check the damage condition of the refractory materials in the furnace carefully.
★And then CNBM will give the damage mechanism analysis report to the customer.And CNBM also will provide products improvement solutions to extend the products' service life.

Technical Solution& Construction
★Optimization solutions of the original design to the customer.
★Consultation Service of Refractories Technology
★Technical Staff Training in Refractories Technology
★Specialized Design and Refractories Selection


FAQ
Q:Are you a trading company or manufacturer?
A:CNBM is a large-scale central governmental industrial group with its own manufacturing sector, research and development sector, trading sector and logistics sector.

Q:I have some special requirement about specifications.
A:We have a well-rounded product range, which endows us with the capability of applying many special specifications. Please feel free to contact us with yours.

Q:Do you accept OEM service?
A:Yes, we do.

Q:What is your delivery time?
A:It depends on the size/complexity of your order and our own production schedule. Usually we provide a faster delivery than the industry's average.

Q:What is the payment term?
A:Our payment terms are negotiable.

Q:Can I have my own logo on the product?
A:Sure, we can apply your own logo on the products according to your drawings.

 

Q: What are the common failure modes of monolithic refractories in iron and steel applications?
The common failure modes of monolithic refractories in iron and steel applications include thermal spalling, erosion, chemical attack, and mechanical damage. Thermal spalling occurs when the refractories cannot withstand the extreme temperature changes, leading to cracking and flaking. Erosion occurs due to the abrasive nature of molten metal or slag, causing the refractory material to wear away. Chemical attack happens when the refractory reacts with the corrosive components of the molten metal or slag, leading to degradation. Mechanical damage can occur from mechanical stress, such as thermal expansion or contraction, causing cracks or fractures in the refractory material.
Q: How do monolithic refractories withstand the corrosive environments in steelmaking processes?
Monolithic refractories are able to withstand corrosive environments in steelmaking processes due to their unique properties and composition. First and foremost, monolithic refractories are known for their high resistance to temperature and thermal shock. Steelmaking processes involve extremely high temperatures, sometimes reaching up to 1700 degrees Celsius. Monolithic refractories are designed to withstand these extreme temperatures without losing their structural integrity. Additionally, monolithic refractories have excellent chemical resistance. The corrosive environments in steelmaking processes often consist of aggressive chemicals such as molten metal, slag, and gases like carbon monoxide and sulfur dioxide. Monolithic refractories are made from materials that are resistant to these chemicals, preventing them from reacting and causing corrosion. Moreover, monolithic refractories have a dense and homogeneous structure. This helps to prevent the penetration of corrosive agents into the refractory material, further enhancing its resistance to corrosion. The dense structure also minimizes the formation of cracks and fissures, which can act as pathways for corrosive agents to infiltrate the refractory. Furthermore, monolithic refractories are often made from materials with high refractoriness, such as alumina, magnesia, and silica. These materials have high melting points, which makes them more resistant to the extreme temperatures in steelmaking processes. They also have low thermal conductivity, which helps to minimize heat transfer and reduce the risk of thermal damage to the refractory. Lastly, monolithic refractories are often designed with specific additives and binders that enhance their resistance to corrosion. These additives can include materials like zircon, chrome, or graphite, which provide additional protection against the corrosive environment. In conclusion, monolithic refractories withstand the corrosive environments in steelmaking processes through their high resistance to temperature and thermal shock, excellent chemical resistance, dense and homogeneous structure, high refractoriness, and the use of specific additives and binders. These properties and characteristics make monolithic refractories an ideal choice for withstanding the harsh conditions of steelmaking processes and ensuring the longevity and efficiency of the refractory lining.
Q: In iron and steel industry, the main raw materials for blast furnace ironmaking are iron ore, coke and limestone. What's the use of limestone here?
At high temperatures, limestone (calcium carbonate) breaks down into lime (calcium oxide, which is useful) and carbon dioxide.
Q: How do monolithic refractories impact the quality and performance of iron and steel products?
Monolithic refractories play a crucial role in ensuring the quality and performance of iron and steel products. These refractories are specifically designed to withstand extremely high temperatures and harsh conditions, making them an essential component in various applications within the iron and steel industry. Firstly, monolithic refractories contribute to the overall quality of iron and steel products by providing excellent thermal insulation. They help to maintain a consistent and controlled temperature environment in the manufacturing process. This is particularly important in blast furnaces, where temperatures can reach up to 2,000 degrees Celsius. By effectively insulating the furnace walls, monolithic refractories help to minimize heat loss and ensure efficient energy utilization. This ultimately leads to higher-quality products with improved mechanical properties. Secondly, monolithic refractories offer superior resistance to chemical and physical wear. In the steelmaking process, molten metal and slag can be highly corrosive, causing erosion and degradation of the refractory lining. Monolithic refractories are specifically engineered to withstand these aggressive environments, providing excellent resistance to chemical attack and mechanical stress. By maintaining the integrity of the lining, they prevent contamination and prolong the lifespan of the furnace or ladle, ultimately enhancing the quality of the final iron and steel products. Furthermore, monolithic refractories enable greater design flexibility and ease of installation. Unlike traditional refractory bricks, which require meticulous placement and fitting, monolithic refractories can be applied as a single, cohesive material. This allows for more complex shapes and structures, resulting in optimized furnace design and improved thermal efficiency. Additionally, the ease of installation reduces downtime during maintenance and repairs, ensuring continuous production and minimizing disruptions to the production process. Overall, monolithic refractories significantly impact the quality and performance of iron and steel products. They provide excellent thermal insulation, resist chemical and physical wear, and offer greater design flexibility. By ensuring consistent and controlled temperature environments, preventing contamination, and enabling efficient production processes, monolithic refractories contribute to the production of high-quality iron and steel products that meet the stringent requirements of various industries.
Q: What are the common testing methods used to evaluate the performance of monolithic refractories?
To evaluate the performance of monolithic refractories, various commonly used testing methods are employed. These methods aid in determining the durability and suitability of refractory materials for different applications. Some of the frequently utilized testing methods include: 1. Thermal Conductivity Testing: This method gauges the heat conductivity of a refractory material. It assists in assessing the insulation properties and resistance to thermal shocks. 2. Compression Testing: This test measures the compressive strength of the refractory material. It provides insights into its ability to withstand external forces and pressure without fracturing or deforming. 3. Abrasion Testing: This method assesses the refractory material's resistance against wear and tear caused by abrasive forces. It helps evaluate its ability to endure erosive conditions and prolonged exposure to harsh environments. 4. Creep Testing: By measuring the deformation or sagging of the refractory material under high temperatures and constant loading, this testing method assesses its resistance to deformation and ability to maintain shape over time. 5. Thermal Expansion Testing: This test determines the expansion and contraction characteristics of the refractory material when exposed to different temperatures. It aids in evaluating its ability to withstand thermal cycling without cracking or fracturing. 6. Chemical Resistance Testing: This method evaluates the refractory material's resistance to chemical attacks, such as corrosion or erosion resulting from chemical reactions. It assists in determining its suitability for applications involving contact with corrosive substances. 7. Refractoriness Under Load (RUL) Testing: This test measures the refractory material's ability to withstand high temperatures while maintaining structural integrity. It aids in assessing its resistance to thermal stresses and suitability for high-temperature applications. These testing methods provide valuable data for evaluating the performance of monolithic refractories and ensuring their appropriateness for specific industrial applications. By considering these properties, manufacturers and users can make well-informed decisions regarding the selection and usage of refractory materials.
Q: How do monolithic refractories improve the efficiency of ladle and tundish preheaters?
The efficiency of ladle and tundish preheaters can be significantly improved through the utilization of monolithic refractories, which play a vital role in this process. To begin with, monolithic refractories possess exceptional thermal insulation properties. Their low thermal conductivity ensures that heat loss from the preheaters is effectively prevented. By minimizing heat loss, monolithic refractories ensure that the majority of the heat generated by the preheater is utilized for preheating the ladle or tundish. This results in reduced energy consumption and enhanced efficiency of the preheating process. Additionally, monolithic refractories offer remarkable resistance to thermal shocks. As ladle and tundish preheaters are subjected to rapid and extreme temperature changes during operation, it is crucial for the refractories to withstand these shocks. The ability of monolithic refractories to endure these thermal shocks ensures their long-lasting performance, reducing the need for frequent repairs or replacements. This not only enhances the efficiency of the preheaters but also reduces downtime and maintenance costs. Furthermore, monolithic refractories exhibit excellent mechanical strength and resistance to abrasion. The constant wear and tear experienced by ladle and tundish preheaters due to the movement of ladles or tundishes, as well as the abrasive nature of the materials being processed, can be mitigated through the use of monolithic refractories. These refractories prevent erosion and damage to the preheaters, ensuring their longevity and optimal functioning. Consequently, this improves the overall efficiency of ladle and tundish preheaters by reducing downtime and maintenance requirements. Lastly, monolithic refractories offer the advantage of design flexibility. They can be customized and shaped to meet the specific requirements of ladle or tundish preheaters. This allows for better fitting and insulation, maximizing heat transfer efficiency. The ability to tailor the refractory lining to the preheater's design also ensures uniform heating, minimizing temperature variations and improving overall operational efficiency. In conclusion, monolithic refractories contribute to the improved efficiency of ladle and tundish preheaters by providing superior thermal insulation, resistance to thermal shocks, mechanical strength, abrasion resistance, and design flexibility. These properties result in reduced heat loss, minimized downtime, enhanced durability, and optimized heat transfer, ultimately leading to improved efficiency of the preheating process.
Q: How do monolithic refractories contribute to the reduction of heat loss in ladles and tundishes?
Monolithic refractories play a crucial role in reducing heat loss in ladles and tundishes. These refractories are designed to provide excellent thermal insulation properties, which help to minimize the transfer of heat from the molten metal to the surrounding environment. One of the key factors contributing to heat loss in ladles and tundishes is conduction, where heat is transferred through direct contact with the refractory lining. Monolithic refractories are specifically engineered to have low thermal conductivity, meaning they are efficient at reducing heat transfer through conduction. This helps to maintain the desired temperature of the molten metal for longer periods, ultimately reducing energy consumption and improving overall process efficiency. Furthermore, monolithic refractories also aid in reducing heat loss through radiation. These refractories have high emissivity, which means they emit a significant amount of thermal radiation. This emitted radiation helps to create a heat shield around the molten metal, preventing the loss of heat to the surroundings. By effectively trapping the radiant heat, monolithic refractories contribute to maintaining the desired temperature in ladles and tundishes, thereby minimizing heat loss. In addition to their thermal insulation properties, monolithic refractories also offer excellent resistance to thermal shock and mechanical stress, ensuring they remain intact and functional in the harsh operating conditions of ladles and tundishes. This durability further contributes to the reduction of heat loss by preventing any cracks or gaps in the refractory lining that could facilitate heat transfer. In summary, monolithic refractories significantly contribute to the reduction of heat loss in ladles and tundishes by minimizing heat transfer through conduction and radiation. Their thermal insulation properties, combined with their resistance to thermal shock and mechanical stress, help to maintain the desired temperature of the molten metal, improve energy efficiency, and enhance the overall performance of these metallurgical vessels.
Q: What are the key properties of patching mixes used for monolithic refractory repairs?
The key properties required for patching mixes used in the repair of monolithic refractories include: 1. High temperature resistance: The patching mixes should have the ability to withstand high temperatures without compromising their structural integrity. They must be capable of enduring temperatures ranging from 2000 to 3000 degrees Fahrenheit. 2. Chemical resistance: These patching mixes should be resistant to chemical reactions that occur in the presence of molten metals, slag, or other corrosive substances. They should not deteriorate or react with these materials, ensuring the longevity of the repaired refractory. 3. Thermal shock resistance: The patching mixes must have the ability to withstand sudden and extreme temperature changes without cracking or spalling. Refractory linings are often subjected to intense thermal cycling, and the patching material should be able to endure these conditions without failure. 4. Adhesion: The patching mixes should possess excellent adhesion properties to create a strong bond with the existing refractory material. This is crucial to prevent any separation or detachment of the patching material, which could result in further damage or failure. 5. Workability: The patching mixes should have good workability, allowing for easy and efficient application. They should be easily moldable and capable of effectively filling cracks, gaps, or damaged areas. 6. Setting and curing time: The patching mixes should have a reasonable setting and curing time. They should be able to harden quickly to minimize downtime during repairs, while also providing sufficient time for proper application and shaping. 7. Density and porosity: The patching material should have an appropriate density and porosity to resist penetration by molten metal or slag. Low porosity ensures that the repaired refractory maintains its thermal insulation properties. 8. Mechanical strength: The patching mixes should exhibit adequate mechanical strength to withstand physical stresses, such as abrasion or impact, that may occur during operation. 9. Compatibility: It is important that the patching mixes are compatible with the existing refractory material to ensure a seamless integration and prevent any potential chemical reactions or incompatibilities that could compromise the repair. By considering these key properties, patching mixes used for monolithic refractory repairs can effectively restore the integrity and performance of refractory linings, prolonging their lifespan and ensuring efficient and safe operation in high-temperature environments.
Q: What are the main factors affecting the erosion resistance of monolithic refractories?
Several key factors influence the erosion resistance of monolithic refractories. These factors encompass the chemical composition of the refractory material, the microstructure of the material, the temperature and environment in which it is utilized, and the mechanical properties of the material. The erosion resistance of monolithic refractories heavily relies on the chemical composition. The inclusion of specific chemical elements and compounds can enhance the refractory's resistance to erosion, while others may render it more susceptible. For instance, the addition of alumina (Al2O3) to the refractory composition can augment its erosion resistance by forming a protective layer on the surface. Conversely, the presence of impurities or excessive amounts of certain elements can weaken the refractory and heighten its susceptibility to erosion. The microstructure of the monolithic refractory is another critical factor affecting erosion resistance. The microstructure denotes the arrangement and distribution of particles within the refractory. A well-structured microstructure with a uniform particle distribution can provide superior erosion resistance as it ensures an even distribution of load when exposed to erosive forces. Conversely, a poorly structured microstructure with particle clusters or weak bonding may result in localized erosion and failure. Erosion resistance is significantly influenced by the temperature and environment in which the refractory is employed. High temperatures can induce thermal stresses, chemical reactions, and phase changes in the refractory material, all of which impact its erosion resistance. Additionally, the presence of corrosive gases, liquids, or slags can expedite erosion by promoting chemical reactions or attacking the refractory material, leading to its deterioration. Lastly, the mechanical properties of the monolithic refractory, including strength, hardness, and toughness, contribute to erosion resistance. A refractory with higher mechanical strength and hardness can withstand erosive forces more effectively than a weaker material. Similarly, increased toughness aids in the refractory's resistance to cracking or spalling when subjected to impact or thermal shock, reducing its vulnerability to erosion. To summarize, the erosion resistance of monolithic refractories is influenced by the chemical composition, microstructure, temperature and environment, and mechanical properties of the material. Understanding and optimizing these factors can facilitate the development of refractories with enhanced erosion resistance for diverse industrial applications.
Q: What are the main factors affecting the abrasion resistance of monolithic refractories?
The main factors affecting the abrasion resistance of monolithic refractories can be categorized into three key aspects: material composition, microstructure, and service conditions. Firstly, material composition plays a crucial role in determining the abrasion resistance of monolithic refractories. The choice of raw materials, such as aggregates and binders, directly influences the overall hardness, strength, and wear resistance of the refractory. For instance, high-alumina refractories, which contain a high percentage of alumina as the main component, tend to exhibit excellent abrasion resistance due to the hardness and toughness of alumina. Conversely, refractories with a high proportion of softer materials like clay or magnesia may have lower abrasion resistance. Secondly, the microstructure of monolithic refractories greatly affects their ability to withstand abrasion. The distribution and orientation of aggregates, as well as the bond strength between the particles and the matrix, play significant roles in determining the resistance to wear. A well-distributed and interconnected network of aggregates can enhance the refractory's strength and resistance to abrasion. Additionally, a dense and well-sintered matrix can inhibit the penetration of abrasive particles, thereby reducing wear. Lastly, the service conditions in which the monolithic refractories are exposed to are crucial factors in determining their abrasion resistance. Factors such as temperature, atmosphere, and mechanical stress can significantly impact the wear behavior of refractories. High temperatures can cause thermal expansion and contraction, leading to cracks and spalling, which can accelerate abrasion. The presence of corrosive gases or chemicals can also deteriorate the refractory's microstructure, reducing its resistance to wear. Furthermore, mechanical stress from impact or friction can cause localized wear and damage the refractory. In conclusion, the main factors affecting the abrasion resistance of monolithic refractories include material composition, microstructure, and service conditions. By carefully selecting the appropriate raw materials, optimizing the microstructure, and considering the specific service conditions, it is possible to enhance the abrasion resistance of monolithic refractories and improve their overall performance in high-wear applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords