• Hot Rolled Spring Flat Bar System 1
  • Hot Rolled Spring Flat Bar System 2
  • Hot Rolled Spring Flat Bar System 3
Hot Rolled Spring Flat Bar

Hot Rolled Spring Flat Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering high quality Steel Flat Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Flat Bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Flat Bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Commodity: Mild Steel Flat Bar

Standard: GB;JIS

Material: Q195-235;SS400

Origin place: China

Thickness: 3mm-30mm

Width:20mm-200mm

Length: Max 12m

Certification: SGS/BV

 



Usage/Applications of Steel Flat Bar

Widely used for construction, Machinery manufacturing, Iron tower steel structure, Shipbuilding; Steel grating, Staircase, Bridge, Viaduct, Railway spare parts, Boilers making etc.

Packaging & Delivery of Mild Steel Flat Bar

Packaging Details: The Mild Steel Flat Bars are packed in bundles and loaded in 20 feet/40 feet container, or shipped by bulk cargo ,also we can do as customer's requirements.

Delivery Details:30~45 days upon the receipt of buyer payment by T.T. or L/C.

Production Flow of Steel Flat Bar

The Mild steel flat bar is made through three processes:

1.Feeding the material: Feeding the row material (the steel plate) to Slitting Line.

2.Slitting:The steel plate would be slitted into expected width by lengthways cutter.

3. Leveled and cutting: The plat bar would be ground into level by the grinder and then cut into required length


FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q: What are the most common alloys used in special steel?
The most common alloys used in special steel include stainless steel, tool steel, and high-speed steel.
Q: What are the main factors affecting the formability of special steel?
Several factors influence the formability of special steel, similar to other types of steel. These factors encompass the composition, microstructure, mechanical properties, temperature, and strain rate of the steel. The composition of special steel plays a vital role in determining its formability. The presence of alloying elements, such as chromium, nickel, molybdenum, and vanadium, can significantly impact the steel's ability to be shaped. These elements have the power to modify the steel's strength, ductility, and resistance to deformation. Another crucial factor influencing the formability of special steel is its microstructure. Fine-grained steels generally exhibit superior formability compared to coarse-grained steels. Additionally, the existence of non-metallic inclusions, like sulfides and oxides, can act as stress concentrators and promote crack formation, thereby influencing formability. The mechanical properties of special steel, including yield strength, tensile strength, and elongation, directly affect its formability. Steels with higher yield strength typically pose greater difficulty in shaping as they require more force for deformation. However, steels with high elongation can undergo more significant plastic deformation before failure, making them more formable. Temperature is also a critical factor impacting the formability of special steel. Elevated temperatures enhance the steel's ductility and make it easier to shape. This is due to the reduction in yield strength and increased movement of dislocations within the crystal structure. However, excessively high temperatures can lead to grain growth, negatively impacting formability. The strain rate, which refers to the rate of deformation applied to the steel, also influences formability. Higher strain rates can result in strain hardening, making the steel stronger but less formable. Conversely, lower strain rates allow for greater plastic deformation and improved formability. In conclusion, achieving the desired formability and shaping capabilities of special steel in various applications necessitates an understanding and optimization of its composition, microstructure, mechanical properties, temperature, and strain rate.
Q: What are the main applications of special steel in the automotive electrical systems?
Special steel is commonly used in automotive electrical systems for various applications such as manufacturing electrical connectors, terminals, and wiring harnesses. It offers high conductivity, corrosion resistance, and superior strength, making it an ideal choice for components that require efficient flow of electrical current and durability in harsh environments. Additionally, special steel can also be utilized in the construction of sensors, relays, and other electronic devices within the automotive electrical system, ensuring reliable performance and longevity.
Q: How does special steel perform in high-temperature oxidation?
Special steel performs well in high-temperature oxidation due to its enhanced resistance to heat and corrosion. It exhibits superior strength and stability, retaining its mechanical properties even at elevated temperatures. Additionally, the presence of alloying elements like chromium, nickel, and molybdenum in special steel forms a protective oxide layer that prevents further oxidation. This makes special steel an ideal choice for applications requiring resistance to high-temperature oxidation, such as in aerospace, power generation, and chemical industries.
Q: What are the different heat treatment defects in special steel?
Some common heat treatment defects in special steel include decarburization, quench cracking, distortion, and grain growth. Decarburization occurs when the surface of the steel loses carbon during the heating process, leading to a reduction in hardness and strength. Quench cracking refers to the formation of cracks due to rapid cooling after the steel has been heated. Distortion can occur when uneven heating or cooling causes changes in shape or dimensions of the steel. Finally, grain growth refers to the enlargement of grain size, which can negatively impact the mechanical properties of the steel.
Q: What are the physical properties of special steel?
Special steel refers to a broad category of steel alloys that possess unique physical properties compared to regular steel. These properties can vary depending on the specific type of special steel. However, some common physical properties include high strength, hardness, toughness, and resistance to corrosion and wear. Special steels are often tailored for specific applications, such as automotive components, aerospace structures, or toolmaking, to meet the demanding requirements of these industries.
Q: Can special steel be used in the wood manufacturing industry?
Yes, special steel can be used in the wood manufacturing industry. Special steel, such as high-speed steel or tool steel, can be utilized in the production of cutting tools, saw blades, or other machinery components used in wood processing. These types of steel offer enhanced durability, hardness, and resistance to wear, making them suitable for various wood manufacturing applications.
Q: How does special steel contribute to the agriculture aftermarket industry?
Special steel contributes to the agriculture aftermarket industry by offering enhanced durability, strength, and corrosion resistance, which are crucial for manufacturing agricultural machinery and equipment. It allows for the production of high-quality components that can withstand harsh farming conditions and heavy usage. Additionally, special steel enables the creation of innovative designs and improved performance, ultimately increasing productivity and efficiency in the agriculture sector.
Q: What are the challenges faced in the manufacturing process of special steel?
The manufacturing process of special steel involves numerous challenges that need to be addressed to ensure the production of high-quality steel. Some of the main challenges faced in this process are: 1. Raw material selection: Special steels require specific alloying elements in precise proportions to achieve desired properties. Choosing the right raw materials is crucial, as it directly impacts the quality of the final product. Ensuring consistent availability and quality of these raw materials can be a challenge. 2. Alloy design and composition: Designing the alloy composition to meet specific requirements can be complex. Achieving the desired balance of strength, hardness, toughness, corrosion resistance, and other properties requires thorough research, testing, and expertise. Developing new alloys with improved properties can be particularly challenging. 3. Melting and refining: Special steels are typically produced through electric arc furnaces or induction melting. Maintaining precise temperature control, proper cooling rates, and refining processes to eliminate impurities like sulfur, phosphorus, and non-metallic inclusions are crucial. These steps require advanced technology and precise control to ensure consistent quality. 4. Heat treatment: Heat treatment is a critical step in the manufacturing process of special steel. Achieving the desired microstructure and properties through processes like quenching, tempering, annealing, or precipitation hardening can be challenging. Proper temperature control, heating and cooling rates, and time durations are essential for obtaining the desired properties. 5. Quality control and testing: Ensuring consistent quality throughout the manufacturing process is paramount. Regular testing and inspection to detect and eliminate defects, inconsistencies, and non-conformities are necessary. This includes dimensional accuracy, mechanical properties testing, non-destructive testing, and chemical analysis. 6. Production efficiency: Special steel manufacturing often involves complex procedures and longer processing times compared to regular steel production. Optimizing the production process to maximize efficiency, minimize waste, and reduce energy consumption is a constant challenge. Implementing lean manufacturing principles and utilizing advanced technologies can help address these challenges. 7. Environmental considerations: Manufacturing special steel can have a significant environmental impact. Addressing issues like energy consumption, waste management, emissions control, and water usage is essential for sustainable production. Compliance with environmental regulations and adopting eco-friendly practices can be challenging yet necessary. Overcoming these challenges requires a combination of technical expertise, research and development, investment in advanced equipment and technologies, and an ongoing commitment to quality control and process improvement.
Q: How is low alloy steel used in the manufacturing of pressure vessels?
Low alloy steel is used in the manufacturing of pressure vessels due to its excellent strength and durability properties. It can withstand high pressures and temperatures, making it ideal for containing and storing fluids or gases under extreme conditions. The low alloy composition enhances the steel's resistance to corrosion, erosion, and cracking, ensuring the safety and longevity of the pressure vessel. Additionally, low alloy steel offers cost-effective advantages compared to other high-alloy materials, making it a preferred choice in the manufacturing industry.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords