• Spring Steel Hot Rolled Flat Bar System 1
  • Spring Steel Hot Rolled Flat Bar System 2
  • Spring Steel Hot Rolled Flat Bar System 3
Spring Steel Hot Rolled Flat Bar

Spring Steel Hot Rolled Flat Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering high quality Steel Flat Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Flat Bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Flat Bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Commodity: Mild Steel Flat Bar

Standard: GB;JIS

Material: Q195-235;SS400

Origin place: China

Thickness: 3mm-30mm

Width:20mm-200mm

Length: Max 12m

Certification: SGS/BV

 




Usage/Applications of Steel Flat Bar

Widely used for construction, Machinery manufacturing, Iron tower steel structure, Shipbuilding; Steel grating, Staircase, Bridge, Viaduct, Railway spare parts, Boilers making etc.

Packaging & Delivery of Mild Steel Flat Bar

Packaging Details: The Mild Steel Flat Bars are packed in bundles and loaded in 20 feet/40 feet container, or shipped by bulk cargo ,also we can do as customer's requirements.

Delivery Details:30~45 days upon the receipt of buyer payment by T.T. or L/C.

Production Flow of Steel Flat Bar

The Mild steel flat bar is made through three processes:

1.Feeding the material: Feeding the row material (the steel plate) to Slitting Line.

2.Slitting:The steel plate would be slitted into expected width by lengthways cutter.

3. Leveled and cutting: The plat bar would be ground into level by the grinder and then cut into required length

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q: How is special steel tested for quality?
Special steel is tested for quality through a series of rigorous examinations and tests. These include visual inspections, chemical composition analysis, mechanical property testing, and non-destructive testing methods such as ultrasonic testing and magnetic particle testing. These tests ensure that the special steel meets the necessary standards and specifications for its intended use, guaranteeing its quality and performance.
Q: What are the main applications of special steel in the pharmaceutical industry?
Special steel is widely used in the pharmaceutical industry for various applications. One of the main applications is in the manufacturing of equipment and machinery used for drug production, such as mixing tanks, reactors, and centrifuges. Special steel is preferred in these applications due to its excellent corrosion resistance, high strength, and durability, ensuring the integrity of the pharmaceutical processes and preventing contamination. Additionally, special steel is also used for constructing cleanroom furniture and fixtures, which require high cleanliness standards to maintain the sterility of pharmaceutical environments. Overall, special steel plays a crucial role in ensuring the quality, safety, and efficiency of pharmaceutical manufacturing processes.
Q: How does precipitation-hardening steel achieve high strength through heat treatment?
Precipitation-hardening steel achieves high strength through heat treatment by a process called aging. This involves heating the steel to a specific temperature and holding it there for a certain period of time, followed by rapid cooling. During this process, the alloying elements in the steel form fine particle precipitates, which obstruct the movement of dislocations within the crystal structure. These precipitates act as barriers that hinder the deformation of the material, resulting in increased strength.
Q: How does special steel perform in abrasive environments?
Special steel is specifically designed to perform exceptionally well in abrasive environments. Its unique composition and manufacturing process make it highly resistant to wear, corrosion, and impact caused by abrasive materials. It maintains its strength, durability, and performance even under extreme conditions, making it an ideal choice for applications such as mining, construction, and manufacturing industries where abrasive environments are prevalent.
Q: Can special steel be used for making marine components?
Yes, special steel can be used for making marine components. Special steel, also known as marine grade steel, is specifically designed to withstand the harsh conditions of marine environments. These environments are exposed to corrosion, high humidity, and saltwater, which can cause regular steel to deteriorate quickly. Marine grade steel is typically made with added alloys, such as nickel, chromium, and molybdenum, which provide excellent corrosion resistance and durability. These alloys help the steel resist the corrosive effects of saltwater and prevent rusting. Additionally, special steel is often coated with protective coatings or treated to further enhance its resistance to corrosion. Marine components made from special steel include ship hulls, propellers, shafts, valves, pipelines, and various structural elements. The use of special steel ensures the longevity and reliability of these components in demanding marine conditions. Furthermore, the strength and toughness of special steel make it suitable for withstanding the high mechanical stresses and impacts experienced at sea. In summary, special steel is an ideal material for making marine components due to its superior corrosion resistance, durability, and strength. It helps to ensure the longevity and reliability of marine structures and equipment in harsh marine environments.
Q: What is the composition of special steel?
Special steel is a type of steel that is alloyed with various elements to enhance its specific properties, such as increased strength, corrosion resistance, or heat resistance. The composition of special steel can vary depending on the desired characteristics, but it commonly includes elements like chromium, nickel, molybdenum, vanadium, and tungsten, among others. These alloying elements contribute to the unique properties and performance of special steel in various industries, including automotive, aerospace, and construction.
Q: How does special steel contribute to the energy sector?
The energy sector heavily relies on special steel, which plays a vital role in improving efficiency, reliability, and safety. Firstly, special steel is essential for constructing pipelines and storage tanks in the oil and gas industry. These components must withstand high pressures, extreme temperatures, and corrosive surroundings, and special steel provides the necessary strength and resistance to ensure their integrity and prevent any leakage. Additionally, special steel is utilized in power generation plants to manufacture turbine blades and other crucial parts. These plants require materials that can endure the high temperatures and pressures generated by fossil fuel combustion or nuclear energy use. Special steel's heat-resistant properties make it the perfect choice for these applications, enhancing the overall efficiency and longevity of power plants. Furthermore, special steel is vital for producing wind turbines, which are rapidly becoming a significant source of renewable energy. The blades, tower structures, and gearboxes of wind turbines undergo significant stress and strain, and special steel provides the strength and durability needed to withstand these conditions. By incorporating special steel, wind turbines can operate reliably and efficiently, contributing to the growth of clean energy. Moreover, special steel is indispensable for infrastructure in the energy sector, such as transmission towers and substations. These structures must support heavy loads and endure extreme weather conditions while maintaining electrical conductivity. Special steel's high strength and corrosion resistance make it an ideal material for these applications, ensuring the reliable transmission and distribution of electricity. In summary, special steel is a crucial element in the energy sector, providing the necessary strength, durability, and resistance to extreme conditions. Its use in pipelines, power generation plants, wind turbines, and infrastructure improves the efficiency, reliability, and safety of the energy sector, facilitating the production and distribution of both conventional and renewable energy sources.
Q: What is the impact of impurities on the machinability of special steel?
The impact of impurities on the machinability of special steel can be significant. Impurities in the steel, such as sulfur, phosphorus, and non-metallic inclusions, can adversely affect the performance and machinability of the material. Sulfur is commonly present in steel as an impurity, and it tends to form brittle compounds that can reduce the machinability of the steel. High levels of sulfur can lead to increased tool wear, poor surface finish, and decreased cutting tool life. Therefore, it is essential to control the sulfur content in special steel to ensure good machinability. Phosphorus is another impurity that can have a negative impact on machinability. It tends to form hard and brittle compounds, which can cause tool chipping, breakage, and poor chip control. High levels of phosphorus can also lead to reduced cutting tool life and surface finish. Non-metallic inclusions, such as oxides, sulfides, and silicates, are also significant impurities in steel. These inclusions can act as stress concentrators, leading to increased tool wear and decreased machining quality. Large inclusions can cause tool breakage and interrupt the machining process. Therefore, minimizing the presence of non-metallic inclusions is crucial for improving the machinability of special steel. Overall, impurities in special steel can have a detrimental effect on its machinability. To ensure good machinability, it is important to control and minimize the levels of impurities like sulfur, phosphorus, and non-metallic inclusions. This can be achieved through careful selection of raw materials, refining processes, and quality control measures during the manufacturing of special steel.
Q: How does special steel contribute to reducing product downtime due to repairs?
Special steel contributes to reducing product downtime due to repairs by offering superior strength, durability, and corrosion resistance. This type of steel is specifically designed to withstand harsh operating conditions and extreme temperatures, reducing the likelihood of breakdowns or failures. Its exceptional properties allow for longer periods between maintenance and repairs, ensuring that the product remains operational for extended periods. Additionally, special steel often enables faster and more efficient repairs, as it can be easily welded, machined, or replaced, minimizing the time required for downtime and maximizing productivity.
Q: How does mold steel resist wear and erosion?
Mold steel resists wear and erosion due to its high hardness and toughness properties. It is specifically designed to withstand the abrasive forces and friction that occur during molding processes. Additionally, mold steel is often heat-treated to further enhance its resistance against wear and erosion, making it a durable and long-lasting material for mold manufacturing.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords