Hot Rolled Equal Angle
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Structure Steel Hot Rolled Angle Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Trusses;
Transmission towers;
Telecommunication towers;
Bracing for general structures;
Stiffeners in structural use.
Product Advantages:
OKorder's Structure Steel Hot Rolled Angle Bar are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
1.Standards:GB,ASTM,BS,AISI,DIN,JIS
2.Invoicing on theoretical weight or actual weight as customer request
3.Material: JIS G3192,SS400;SS540.
4. Payment terms:
1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3).30% T/T prepaid and the balance against L/C
5.Sizes:
5. Material Specifications:
Grade | Yield Strength,N/mm² | Extension Strength N/mm² | |||
Thickness of Steel,mm | |||||
≦16 | >16-≦40 | >40-≦100 | >100 | ||
SS330 | ≧205 | ≧195 | ≧175 | ≧165 | 330-430 |
SS400 | ≧245 | ≧235 | ≧215 | ≧205 | 400-510 |
SS490 | ≧285 | ≧275 | ≧255 | ≧245 | 490-610 |
SS540 | ≧400 | ≧390 | - | - | ≧540 |
Packaging & Delivery of Angle Steel
1. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.
2. With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.
3. Marks:
Color mark: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.
Tag mark: There will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.
If loading by container the marking is not needed, but we will prepare it as customer request.
Production flow of Angle Steel
Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q4: What makes stainless steel stainless?
A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
Q5: Can stainless steel rust?
A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.
Images:
- Q: What is the maximum allowable torsional buckling stress for a steel angle?
- The maximum allowable torsional buckling stress for a steel angle depends on several factors, including the material properties of the steel, the geometry of the angle, and the applied load conditions. In general, torsional buckling occurs when a member twists under an applied torque, resulting in a loss of stability and potential failure. To prevent torsional buckling, design codes and standards provide guidelines and formulas to determine the maximum allowable stress. For example, the American Institute of Steel Construction (AISC) provides a formula for the calculation of torsional buckling stress in their Steel Construction Manual. This formula takes into account the section properties of the angle, such as the moment of inertia and the radius of gyration, along with the slenderness ratio and the effective length of the member. It is important to note that the maximum allowable torsional buckling stress varies depending on the specific design requirements and safety factors used in the design process. Therefore, it is essential to refer to the relevant design codes and consult with a structural engineer to determine the specific maximum allowable torsional buckling stress for a given steel angle in a particular design situation.
- Q: What is the maximum axial load for a steel angle?
- The maximum axial load for a steel angle depends on several factors including the dimensions and thickness of the angle, the grade and quality of the steel, and the specific application or use of the angle. However, in general, the maximum axial load for a steel angle can be determined by calculating its allowable stress or ultimate strength. The allowable stress is the maximum stress that a material can withstand without experiencing permanent deformation or failure. To calculate the allowable stress for a steel angle, you would need to know the yield strength of the steel. This is the stress at which the material begins to permanently deform or yield. The maximum axial load can then be calculated by multiplying the allowable stress by the cross-sectional area of the angle. On the other hand, the ultimate strength is the maximum stress that a material can withstand before it fractures or breaks. If the ultimate strength of the steel is known, the maximum axial load can be calculated by multiplying the ultimate strength by the cross-sectional area of the angle. It is important to note that the maximum axial load also depends on the length and support conditions of the steel angle. Longer angles or angles with inadequate support may experience additional bending or buckling, which can affect their maximum load-bearing capacity. In summary, the maximum axial load for a steel angle can be determined by calculating its allowable stress or ultimate strength, considering the dimensions, thickness, grade, and quality of the steel, as well as the specific application and support conditions. It is recommended to consult engineering handbooks or reference materials specific to the type of steel angle being used for accurate load capacity calculations.
- Q: Can steel angles be used in cold climates?
- Yes, steel angles can be used in cold climates. Steel is known for its strength and durability, making it suitable for various construction applications, including in cold climates. Steel angles are commonly used in structural framing, supports, and reinforcements, offering stability and load-bearing capabilities. Additionally, steel has a high resistance to extreme temperatures, including cold weather conditions, making it a reliable choice for construction projects in cold climates. However, it is important to consider the specific requirements and regulations for cold climate construction to ensure proper insulation and protection against freezing temperatures.
- Q: What are the common methods of surface finishing for steel angles?
- There are several common methods of surface finishing for steel angles, depending on the desired aesthetic and functional properties. These methods include: 1. Painting: Painting is one of the most common methods of surface finishing for steel angles. It involves applying a protective coating of paint to the surface to prevent corrosion and enhance its appearance. Different types of paint, such as epoxy, acrylic, or powder coatings, can be used based on specific requirements. 2. Galvanizing: Galvanizing is a popular method for protecting steel angles from rust and corrosion. It involves immersing the steel angle in a bath of molten zinc, which forms a protective layer on the surface. Galvanizing is particularly effective for steel angles exposed to harsh environments or outdoor applications. 3. Powder coating: Powder coating is a process where a dry powder is electrostatically sprayed onto the steel angle and then cured in an oven. This results in a durable and attractive finish that provides excellent resistance to chipping, fading, and corrosion. Powder coating is commonly used when a thicker, more robust finish is desired. 4. Anodizing: Anodizing is a surface finishing process mainly used for aluminum, but it can also be applied to steel angles. It involves creating an oxide layer on the surface of the metal through an electrochemical process. Anodizing provides increased corrosion resistance and can also be used to add color to the steel angle. 5. Shot blasting: Shot blasting is a method of surface preparation that involves bombarding the steel angle with small steel shots at high velocity. This process helps to remove rust, mill scale, and other impurities from the surface, leaving it clean and ready for further finishing processes such as painting or galvanizing. 6. Polishing: Polishing is a surface finishing technique that involves mechanically smoothing and shining the steel angle's surface. This process is typically used to achieve a reflective, mirror-like finish or to remove surface imperfections. These are some of the common methods of surface finishing for steel angles, each offering different benefits and suitable for various applications. The choice of method depends on factors such as the desired appearance, environmental conditions, and specific performance requirements.
- Q: How do steel angles compare to wooden beams?
- Steel angles and wooden beams possess distinct characteristics and abilities that render them suitable for diverse applications. Steel angles, being comprised of steel, demonstrate exceptional strength and longevity. They exhibit remarkable tensile strength and resist bending and warping even when subjected to substantial loads. This renders them an excellent choice for providing structural support in constructions such as buildings, bridges, and other similar projects. Moreover, steel angles possess the advantage of being non-combustible, thereby enhancing fire safety. Conversely, wooden beams offer their own set of advantages. As a natural material, wood is readily accessible and renewable, making it a more environmentally conscious option when compared to steel. Additionally, wooden beams possess an inherent aesthetic appeal, particularly in traditional or rustic designs. They can be effortlessly customized and shaped, enabling the creation of intricate and imaginative designs. Nevertheless, wooden beams do have certain limitations with regards to strength and durability. They do not exhibit the same level of robustness as steel angles and are susceptible to bending, warping, and rotting over time. Additionally, wood is combustible, which can pose safety concerns. In conclusion, both steel angles and wooden beams possess their own unique strengths and weaknesses. Steel angles excel in projects necessitating high strength and durability, while wooden beams offer a more natural and visually appealing option. Ultimately, the choice between the two depends on specific project requirements, budgetary considerations, and personal preferences.
- Q: Are steel angles suitable for earthquake-resistant structures?
- Steel angles are commonly used in earthquake-resistant structures due to their high strength and ductility properties. The angular shape of these structural members allows them to effectively resist lateral forces caused by seismic events. The ability of steel angles to absorb and dissipate energy during an earthquake makes them suitable for withstanding the dynamic loads generated by ground motions. Additionally, steel angles can be easily connected and joined together, providing a high level of structural integrity and ensuring the overall stability of the building. These factors make steel angles a favorable choice for earthquake-resistant structures, as they offer a reliable and durable solution for mitigating the impact of seismic events.
- Q: What are the load-bearing capacities of steel angles?
- The load-bearing capacities of steel angles may differ due to various factors, such as the angle's size, thickness, and the type of steel used, as well as its specific application. Typically, steel angles are designed to offer structural support and can handle substantial loads. The load-bearing capacity of a steel angle is determined by its ability to withstand compression and tension forces, as well as its bending strength. These factors are influenced by the material properties of the steel, including its yield strength, tensile strength, and ductility. Steel angles find common usage in construction and engineering projects, where they are employed to support beams, frames, and structures. Engineers or designers usually specify the load-bearing capacity of a steel angle based on the project's specific requirements and the expected loads. Calculations and structural analysis, following engineering principles and standards, are typically carried out to determine the load-bearing capacity of a steel angle. These calculations take into account the angle's dimensions, support conditions, and the anticipated loads. To ensure that a steel angle's load-bearing capacity meets the necessary requirements for a given application, it is crucial to consult relevant engineering codes and standards provided by organizations such as the American Institute of Steel Construction (AISC) or British Standards Institution (BSI). In conclusion, the load-bearing capacities of steel angles can differ based on several factors. To accurately determine the load-bearing capacity of a specific steel angle for a given application, it is important to consult with a structural engineer or refer to appropriate engineering standards.
- Q: Can steel angles be used in curtain wall or facade systems?
- Certainly, curtain wall or facade systems can indeed incorporate steel angles. These versatile structural elements possess the ability to offer support, stability, and aesthetic allure to curtain walls or facades. They can be employed as framing components to construct the structural framework of the system or as brackets to connect different elements. Steel angles possess outstanding strength and durability, enabling them to withstand the various loads and forces exerted upon curtain walls or facades. Moreover, steel angles can be tailor-made in terms of dimensions, shape, and finish to fulfill the precise design specifications of the project.
- Q: Are steel angles resistant to high winds?
- Yes, steel angles are generally resistant to high winds due to their robust structure and strength. They are commonly used in construction and engineering projects to provide stability and support against strong winds.
- Q: How do you calculate the weight-bearing capacity of a steel angle?
- To calculate the weight-bearing capacity of a steel angle, you need to consider its dimensions, material properties, and loading conditions. The weight-bearing capacity can be calculated using engineering formulas and techniques such as the Euler formula or the AISC Manual. These calculations take into account factors like the cross-sectional area, moment of inertia, and the applied loads to determine the maximum load the steel angle can support without failure.
Send your message to us
Hot Rolled Equal Angle
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords