• Hot Rolled Equal Angle Carbon Steel  Bar System 1
  • Hot Rolled Equal Angle Carbon Steel  Bar System 2
  • Hot Rolled Equal Angle Carbon Steel  Bar System 3
Hot Rolled Equal Angle Carbon Steel  Bar

Hot Rolled Equal Angle Carbon Steel Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Angle Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

.

 

Product Advantages:

OKorder's Angle Bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

 

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

 

Payment:

-Invoicing on theoretical weight or actual weight as customer’s request.

-FOB, CFR or CIF.

-Regular terms of payment:

1, 30% payment in advance, the remaining balance (70% payment) against the copy of B/L.

2, 30% payment in advance, the remaining balance (70% L/C) against the copy of B/L.

3, Negotiable.

-The payment terms will be written in contraction detailed.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

 

Images:

 

 


 




Q: Are steel angles suitable for outdoor furniture?
Yes, steel angles are suitable for outdoor furniture. Steel is a durable and weather-resistant material that can withstand various outdoor conditions, making it an excellent choice for outdoor furniture. Additionally, steel angles provide stability and structural support, ensuring the longevity and functionality of outdoor furniture pieces.
Q: What are the different types of connections used for steel angles in commercial applications?
There are several types of connections used for steel angles in commercial applications, including bolted connections, welded connections, and cleat connections. Bolted connections involve using bolts and nuts to secure the angles together, while welded connections involve fusing the angles together using welding techniques. Cleat connections involve using a separate piece of steel, called a cleat, to connect the angles together. The choice of connection type depends on factors such as the load requirements, design specifications, and ease of installation.
Q: Can steel angles be used for framing purposes?
Framing purposes can indeed involve the utilization of steel angles. In construction and engineering, steel angles are frequently employed to furnish structural support and ensure stability. Their application often involves the construction of frames for an assortment of structures, including buildings, bridges, and more. By welding or bolting steel angles together, a robust and inflexible framework can be created with ease. These angles possess versatility and can be effectively employed in diverse framing scenarios, such as supporting walls, beams, and roofs. Moreover, their durability and exceptional strength-to-weight ratio render steel angles highly suitable for framing endeavors.
Q: Are steel angles available in different alloys?
Different alloys are available for steel angles, providing a wide range of options. Typically, steel angles are made from carbon steel, which is a versatile and common type of steel. However, specific applications may call for other alloys. For instance, stainless steel angles are made from an alloy containing chromium, offering increased resistance to corrosion. In addition, high-strength low-alloy (HSLA) steel angles combine carbon steel with small amounts of elements like manganese, phosphorus, or sulfur to enhance strength and durability. This variety of alloys allows for a diverse range of applications and properties to meet specific needs across various industries.
Q: How do you determine the required length of a steel angle for a specific application?
In order to determine the necessary length of a steel angle for a particular application, several factors must be taken into consideration. 1. Load requirements: The first step is to calculate the maximum load that the angle will need to support. This includes the weight of the object or structure it will be holding, as well as any additional live loads like wind or snow. By determining the load requirement, you can determine the appropriate strength and size of the angle. 2. Structural analysis: Conduct a structural analysis of the intended application to determine the forces and stresses that will be applied to the steel angle. This analysis will help determine the necessary properties of the angle, such as its moment of inertia, section modulus, and bending capacity. 3. Material selection: Select the appropriate steel material for the application based on its mechanical properties, such as yield strength, tensile strength, and ductility. Different grades of steel offer varying levels of strength and durability, so it is important to choose the right material to ensure the angle can withstand the required loads. 4. Design codes and standards: Refer to relevant design codes and standards, such as those established by organizations like the American Institute of Steel Construction (AISC) or the Eurocode, to ensure compliance with industry regulations and guidelines. These codes provide specific formulas and procedures for calculating the required length and size of the angle based on the load and structural analysis. 5. Fabrication considerations: Take into account any limitations or constraints in the fabrication process that may affect the length of the steel angle. For instance, standard lengths of steel angles may be available, so it may be necessary to choose a length that is readily accessible or can be easily obtained through custom fabrication. 6. Consultation with professionals: If there are any uncertainties in determining the required length of a steel angle, it is recommended to seek advice from a structural engineer or a professional experienced in steel design. They can offer expert guidance and ensure that the angle is appropriately sized and designed for the specific application. By considering these factors and following a systematic approach, it is possible to determine the necessary length of a steel angle that fulfills the specific requirements of the application.
Q: Can steel angles be used in the construction of pipe racks?
Yes, steel angles can be used in the construction of pipe racks. Steel angles provide structural support and stability to pipe racks, making them an ideal choice for this type of construction. The angles can be used to create a framework or framework support system for the pipe rack, ensuring that it is strong and able to withstand the weight and pressure of the pipes. Additionally, steel angles are durable and resistant to corrosion, which is important in an environment where pipes may be exposed to various elements. Overall, steel angles are a suitable and commonly used material in the construction of pipe racks.
Q: What are the common tolerances for steel angles?
The common tolerances for steel angles vary depending on the specific application and industry standards. However, there are some generally accepted tolerances that are commonly used in the manufacturing and construction industries. For the dimensions of steel angles, the common tolerances are typically ±1/8 inch or ±3mm. This means that the actual dimensions of the angle can deviate by up to 1/8 inch or 3mm from the specified dimensions. These tolerances are usually acceptable for most applications and allow for variations in the manufacturing process. In terms of straightness, steel angles are generally expected to be straight within a certain tolerance. The common straightness tolerance for steel angles is typically specified as a maximum deviation from a straight line over a given length. For example, a common straightness tolerance might be 1/8 inch or 3mm over a 10-foot length. This means that the angle should not deviate more than 1/8 inch or 3mm from a straight line over a 10-foot span. Another important tolerance for steel angles is the squareness or perpendicularity tolerance. This refers to the angle between the two legs of the angle and is typically specified as a maximum deviation from 90 degrees. Common squareness tolerances for steel angles are often ±1 degree or ±0.5 degrees. This means that the angle between the legs should not deviate more than 1 degree or 0.5 degrees from a perfect right angle. It is important to note that these common tolerances are just guidelines and can vary depending on the specific requirements of a project or industry. Additionally, some industries or applications may have more stringent tolerances to ensure precise and accurate angles for their specific needs. Therefore, it is always recommended to consult the relevant standards or specifications for the specific tolerances required for a particular steel angle application.
Q: How do you calculate the moment capacity of a steel angle?
To calculate the moment capacity of a steel angle, several factors need to be considered. Firstly, the geometry of the angle needs to be determined, including the dimensions of the flanges and the web. The width of the flanges (b) and the thickness of the flanges (tf) and the web (tw) are crucial parameters. Next, the yield strength of the steel material needs to be known. This value represents the stress level at which the steel begins to permanently deform. It can be obtained from the material specifications or testing. The moment capacity of a steel angle can then be calculated using the following equation: Mn = Z × Fy Where: Mn is the moment capacity of the angle (in lb-ft or N-m) Z is the plastic section modulus of the angle (in^3 or mm^3) Fy is the yield strength of the steel material (in psi or MPa) The plastic section modulus (Z) is a measure of the shape's resistance to bending. It can be found in reference tables or calculated using equations specific to the angle's geometry. Once the values for Z and Fy have been determined, they can be plugged into the equation to calculate the moment capacity (Mn) of the steel angle. It is important to note that this calculation assumes elastic behavior of the steel angle and does not account for factors such as strain hardening or local buckling. Additionally, it is crucial to check the calculated moment capacity against the design requirements and safety factors to ensure the angle is suitable for the intended application.
Q: Can steel angles be used in high-temperature environments?
Steel angles can be used in high-temperature environments, but their performance depends on the specific grade of steel being used. Some steel angles are specifically designed for high-temperature applications and can withstand extreme heat without significant distortion or structural failure. These high-temperature steel angles are typically made from alloys that have excellent heat resistance properties, such as stainless steel or nickel-based alloys. However, it is important to consider the operating temperature and duration of exposure when selecting steel angles for high-temperature environments. Prolonged exposure to high temperatures can still lead to some degradation of the material, including oxidation, reduction in mechanical properties, or even melting in extreme cases. To ensure the suitability of steel angles in high-temperature environments, it is recommended to consult with experts or engineers who have knowledge of the specific application and can provide guidance on selecting the appropriate grade of steel angle. Additionally, regular inspections and maintenance are crucial to identify any signs of degradation or wear caused by high temperatures.
Q: How are steel angles welded or joined together?
Steel angles are commonly welded or joined together using different welding techniques. The most common method is by using arc welding, which includes processes like shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and flux-cored arc welding (FCAW). In shielded metal arc welding, an electric arc is created between a coated electrode and the steel angle, melting the metals and forming a weld joint. Gas metal arc welding utilizes a continuous wire electrode and a shielding gas, such as argon or a mixture of argon and carbon dioxide, to protect the weld from atmospheric contaminants. Flux-cored arc welding uses a hollow wire electrode with flux inside, which creates a shielding gas and slag to protect the weld. Another method for joining steel angles is by using resistance welding. This technique involves applying pressure and passing an electric current through the joint area, which generates heat and forms a weld. Resistance welding methods commonly used for steel angles include spot welding and seam welding. Additionally, steel angles can be joined together through stud welding. Stud welding involves placing a threaded or unthreaded stud against the steel angle and using an arc welding process to fuse the stud to the angle. It is important to note that the specific welding or joining method used for steel angles depends on factors such as the thickness and type of steel, the desired strength of the joint, and the application requirements.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords