• Steel Unequal Angle Beams for Structure of Construction System 1
  • Steel Unequal Angle Beams for Structure of Construction System 2
  • Steel Unequal Angle Beams for Structure of Construction System 3
Steel Unequal Angle Beams for Structure of Construction

Steel Unequal Angle Beams for Structure of Construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 

OKorder is offering Steel Unequal Angle Beams for Structure of Construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Unequal Angle Beams for Structure of Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Unequal Angle Beams for Structure of Construction are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

UNEQUAL ANGLE STEEL
size(mm)a(mm)a1(mm)thickness(mm)kg/mlength(m)
75*50*5755054.8086m,9m,12m
75*50*6755065.6996m,9m,12m
75*50*8755087.4316m,9m,12m
100*75*71007579.346m,9m,12m
100*75*810075810.66m,9m,12m
100*75*910075911.86m,9m,12m
100*75*101007510136m,9m,12m
100*75*12100751215.46m,9m,12m
125*75*712575710.76m,9m,12m
125*75*812575812.26m,9m,12m
125*75*912575913.66m,9m,12m
125*75*101257510156m,9m,12m
125*75*12125751217.86m,9m,12m
150*90*815090814.76m,9m,12m
150*90*915090916.46m,9m,12m
150*90*10150901018.26m,9m,12m
150*90*12150901221.66m,9m,12m
200*100*1020010010236m,9m,12m
200*100*122001001227.626m,9m,12m
200*100*152001001534.046m,9m,12m

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How many tons of steel products could be loaded in containers?

A2: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days

 

Images:

angle steel


steel angle



Q: What are the different design considerations for steel angles in industrial buildings?
There are several important design considerations for steel angles in industrial buildings. Firstly, the load-carrying capacity of the steel angles must be determined. This involves calculating the maximum possible loads that the angles will be subjected to, such as the weight of equipment, materials, and any potential dynamic loads. The angles must be designed to safely support these loads without excessive deflection or failure. Secondly, the structural stability of the steel angles must be ensured. This includes considering the buckling strength of the angles, especially if they are long and slender. Adequate bracing or connections may be necessary to prevent buckling under compressive loads. Thirdly, the connections of the steel angles to other structural elements must be carefully designed. The connections should be strong enough to transfer the loads between the angles and other components, such as beams or columns. The type of connection, such as bolted or welded, should be selected based on the specific requirements of the building and the expected loads. Additionally, considerations must be made for factors such as fire resistance and corrosion protection. Steel angles can be susceptible to fire damage, so fire-resistant coatings or fireproofing measures may be necessary to ensure the structural integrity of the building during a fire. Furthermore, appropriate corrosion protection measures, such as galvanization or coatings, should be applied to the steel angles to prevent rusting and deterioration over time. Finally, it is important to consider the aesthetic aspects of the steel angles in industrial buildings. While functionality and structural integrity are paramount, the design should also be visually appealing and fit within the overall architectural style of the building. This may involve selecting the appropriate size, shape, and finish of the steel angles to achieve the desired aesthetic effect. In summary, the design considerations for steel angles in industrial buildings include load-carrying capacity, structural stability, connections, fire resistance, corrosion protection, and aesthetics. By carefully addressing these factors, engineers can ensure the safe and efficient use of steel angles in industrial building design.
Q: What are the standard lengths of steel angles?
The standard lengths of steel angles vary depending on the manufacturer and specific application, but common lengths range from 20 feet to 40 feet.
Q: Can steel angles be used in the construction of warehouses?
Yes, steel angles can be used in the construction of warehouses. Steel angles are commonly used as structural components in buildings and warehouses due to their strength and durability. They provide stability and support to the overall structure, making them suitable for use in various construction applications. Steel angles can be used as framing members, columns, beams, and supports in warehouse construction, helping to create a robust and reliable structure. Additionally, steel angles are versatile and can be easily customized and fabricated to meet specific design requirements, making them a popular choice in warehouse construction projects.
Q: What is the difference between the main keel and the angle steel and the channel steel?
Channel steel is a kind of carbon structural steel used for construction and machinery. It is a complex section steel. Its cross section has a groove shape. Channel steel is mainly used in building structure, curtain wall engineering, mechanical equipment and vehicle manufacturing, etc.. In use, it requires better welding, riveting performance and comprehensive mechanical properties. The raw material steel billet for channel steel is carbon or low alloy steel billets with a carbon content of not more than 0.25%. The finished channel steel is delivered by hot forming, normalizing or hot rolling. The specifications are expressed in millimeters of height (H) * leg width (b) * waist thickness (d), such as 100*48*5.3, which means waist height is 100 mm, leg width is 48 mm, waist thickness is 5.3 mm channel, or 10# channel steel. The same height of the channel, if there are several different leg width and waist thickness, also need to add a, B, C on the right side of the model to distinguish, such as 25#a, 25#b, 25#c and so on.
Q: How do you prevent steel angles from vibrating under dynamic loads?
One possible way to prevent steel angles from vibrating under dynamic loads is by using damping techniques. Damping involves adding materials or structures that absorb or dissipate the energy generated by the vibrating steel angles. This can be achieved by attaching damping pads or strips made of viscoelastic materials to the steel angles, which help absorb and dissipate the vibration energy. Another approach is to incorporate dampers such as tuned mass dampers or friction dampers, which are designed to reduce vibrations by adding additional mass or introducing friction forces to counteract the dynamic loads. Proper design and reinforcement of the steel angles can also help to increase their stiffness and reduce the likelihood of vibration.
Q: What are the different methods of surface finishing for steel angles?
There are several different methods of surface finishing for steel angles, each with its own advantages and considerations. The most common methods include painting, galvanizing, powder coating, and shot blasting. Painting is a popular method for surface finishing steel angles as it provides a protective barrier against corrosion and adds an aesthetic appeal. The angle is typically cleaned and primed before applying multiple coats of paint. This method allows for a wide range of color options and can be easily touched up if damaged. Galvanizing involves coating the steel angle with a layer of zinc to protect it from corrosion. This method is particularly effective in harsh environments where the angle may be exposed to moisture or chemicals. Hot-dip galvanizing is the most common method, where the angle is immersed in a bath of molten zinc. This creates a durable and long-lasting finish that requires minimal maintenance. Powder coating is another popular surface finishing method that involves applying a dry powder to the angle and then curing it with heat to form a protective layer. This method offers excellent durability and resistance to corrosion, chemicals, and UV rays. It also provides a smooth and consistent finish, with a wide range of colors available. Shot blasting is a mechanical method of surface finishing that involves blasting the steel angle with high-speed abrasive particles. This removes any rust, mill scale, or other contaminants from the surface, resulting in a clean and smooth finish. Shot blasting also creates a rough texture that improves paint adhesion, making it an ideal pre-treatment before painting or powder coating. It is important to consider the specific requirements of the steel angle's application when choosing a surface finishing method. Factors such as the environment, expected lifespan, aesthetic preferences, and budget should all be taken into account. Consulting with a professional or the steel manufacturer can help determine the most suitable method of surface finishing for steel angles in a particular situation.
Q: What are the different methods for cutting steel angles?
There are several different methods for cutting steel angles, depending on the specific requirements and the tools available. Some of the most common methods include: 1. Manual cutting: This involves using a handheld hacksaw or a metal cutting bandsaw to cut through the steel angle. It is a labor-intensive method and may not be suitable for large-scale projects or precise cuts. 2. Abrasive cutting: This method uses an abrasive wheel or disc to grind through the steel angle. It is commonly done with an angle grinder or a chop saw. Abrasive cutting is faster than manual cutting and can provide reasonably accurate cuts. 3. Plasma cutting: Plasma cutting involves using a high-temperature plasma arc to melt through the steel angle. It is a versatile method that can cut through thick steel angles quickly and accurately. However, it requires specialized equipment and may not be suitable for small-scale or on-site projects. 4. Laser cutting: Laser cutting uses a high-powered laser beam to melt through the steel angle. It is a precise and efficient method that can produce intricate cuts with minimal heat-affected zones. Laser cutting is commonly used in industrial settings and requires specialized equipment. 5. Waterjet cutting: Waterjet cutting utilizes a high-pressure jet of water mixed with abrasive particles to cut through the steel angle. It is a versatile method that can produce precise cuts without generating heat or causing distortion. Waterjet cutting is commonly used in industries where heat-affected zones and material distortion are a concern. 6. Shearing: Shearing involves using a shear machine to apply a cutting force to the steel angle, causing it to fracture along a predetermined line. It is a fast and efficient method for straight cuts and is commonly used for high-volume production. The choice of cutting method depends on various factors such as the size and thickness of the steel angle, the desired accuracy of the cut, the available equipment, and the project requirements. It is important to consider the specific needs and limitations before selecting the most appropriate cutting method.
Q: Are steel angles suitable for manufacturing equipment enclosures?
Indeed, steel angles prove to be an appropriate choice for the fabrication of equipment enclosures. Given their robustness and enduring nature, steel angles are widely utilized in both construction and manufacturing sectors. They furnish a solid framework for enclosing equipment and can be effortlessly joined through welding or bolting to ensure a secure enclosure. Moreover, steel angles can be tailored to suit precise dimensions and can be effortlessly adjusted or extended if necessary. In summary, steel angles present a dependable and economically viable solution for the production of equipment enclosures.
Q: What is the maximum slope for a steel angle?
The maximum slope for a steel angle depends on various factors such as the size, shape, and thickness of the angle. However, in general, steel angles are designed to withstand vertical loads and provide stability in structural applications. Therefore, the maximum slope for a steel angle is typically limited to angles less than 45 degrees. Going beyond this angle may compromise the structural integrity of the angle and increase the risk of failure. It is important to consult engineering codes, standards, and specifications to determine the specific maximum slope for a particular steel angle in a given application.
Q: What are the common loadings or forces that steel angles are designed to withstand?
Steel angles are commonly used in various structural applications due to their versatility and strength. These angles are designed to withstand a variety of loadings or forces, depending on the specific application. Some common loadings that steel angles are designed to withstand include: 1. Compression: Steel angles can resist compressive forces, which are forces that tend to squeeze or compress the material. They are often used in columns or supports to bear the weight of a structure or to resist crushing loads. 2. Tension: Steel angles can also withstand tensile forces, which are forces that pull or stretch the material. They are often used in tension members, such as roof trusses or bridge supports, to resist pulling or stretching loads. 3. Bending: Steel angles are designed to resist bending forces, which occur when a material is subjected to a combination of tension and compression. They are commonly used in beams or braces to provide structural stability and prevent excessive deflection or bending. 4. Shear: Steel angles can withstand shear forces, which occur when one section of a material is pushed in one direction and another section is pushed in the opposite direction. They are often used in connections or joints to transfer loads between structural members and resist shearing forces. 5. Lateral loads: Steel angles are also designed to withstand lateral loads, which are forces that act horizontally on a structure. These loads can be caused by wind, earthquakes, or other external factors. Steel angles are often used in bracing systems to provide lateral stability and prevent the structure from overturning or collapsing. It is important to note that the specific loadings and forces that steel angles are designed to withstand may vary depending on the size, shape, and grade of the angle, as well as the specific design requirements of the application. Therefore, it is crucial to consult the appropriate design codes and engineering guidelines to ensure the proper selection and application of steel angles in a given structural design.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords