• High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction System 1
  • High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction System 2
  • High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction System 3
High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction

High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
2000000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
ASTM,GB,EN,JIS
Technique:
Hot Rolled
Shape:
Square
Surface Treatment:
Black
Steel Grade:
Q195,Q235,Q215B,Q235B
Certification:
ISO,SGS,BV
Thickness:
3mm
Length:
6000mm
Net Weight:
2000kg

Product Description:

OKorder is offering High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction are durable, strong, and resist corrosion. They are newly produeced by good materiales.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Specifications of High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction 

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

Angle Steel


Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25

5. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

6.Material details:


Alloy No

Grade

Element (%)


C

Mn

S

P

Si











Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3










Alloy No

Grade

Yielding strength point( Mpa)


Thickness (mm)


≤16

>16--40

>40--60

>60--100










Q235

B

235

225

215

205


Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)


Thickness (mm)



≤16

>16--40

>40--60

>60--100











Q235

B

375--500

26

25

24

23


Usage & Applications of High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction 

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.


Packaging & Delivery of High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction 

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.


Production flow of High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction 

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation


FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays. 

 

Images:


High Quality Hot Rolled Steel Equal Angle Equal Angle for Construction

.JPG






Q: How are steel angles priced?
Several factors typically influence the pricing of steel angles. One of these factors is the current market price of steel, which is influenced by elements such as supply and demand, global economic conditions, and fluctuations in the costs of raw materials. The price of steel angles can also be affected by their size and dimensions, with larger and thicker angles generally costing more. The grade and quality of the steel used in the angle also play a role in determining its price. Steel angles made from higher-grade materials, such as stainless steel or alloy steel, tend to be more expensive due to their superior strength and resistance to corrosion. Furthermore, the quantity of steel angles being purchased can impact the price. Bulk orders or larger quantities often qualify for volume discounts, which can reduce the overall cost per unit. Lastly, the pricing of steel angles may also take into account transportation and logistics costs. Factors such as shipping distances, handling fees, and any additional services required for delivery can all contribute to the final price. In conclusion, the pricing of steel angles is determined by a combination of market conditions, size and dimensions, grade and quality, quantity ordered, and transportation costs. It is important to consider these factors when evaluating and comparing prices from different suppliers.
Q: Can steel angles be used in modular or prefabricated construction?
Indeed, modular or prefabricated construction can make use of steel angles. The strength and versatility of steel angles make them popular as structural elements in construction. They can be conveniently fabricated and incorporated into modular or prefabricated building systems, resulting in efficient and economical construction procedures. Steel angles can fulfill multiple purposes such as providing structural support, reinforcing connections, and forming framing systems in modular or prefabricated buildings. Moreover, their capability to be tailored and adjusted to meet different design specifications renders them suitable for a diverse array of building applications within the modular or prefabricated construction sector.
Q: How do steel angles contribute to the resiliency of a structure?
Steel angles contribute to the resiliency of a structure in several ways. Firstly, they provide additional structural support and stability by distributing the load across different members. Steel angles are often used as reinforcements or braces in construction projects, allowing for the transmission of forces and preventing excessive deflection or deformation. This helps to resist the impact of external forces such as wind, earthquakes, or heavy loads, enhancing the structure's overall resilience. Moreover, steel angles are highly durable and corrosion-resistant, which further adds to the resiliency of a structure. Steel, as a material, has exceptional strength and longevity, making it ideal for withstanding harsh environmental conditions and potential structural failures. This durability ensures that the structure can withstand the test of time, reducing the need for frequent repairs or replacements and improving its overall resilience. Additionally, steel angles offer flexibility in design and construction, allowing for efficient load transfer and optimized structural configurations. They can be easily customized and fabricated to meet specific project requirements, ensuring that the structure can be tailored to withstand various dynamic and static loads. This adaptability enhances the resiliency of the structure by enabling it to adapt to changing conditions or future modifications. Overall, steel angles play a crucial role in enhancing the resiliency of a structure by providing additional support, durability, and flexibility. Their ability to distribute loads, resist external forces, and withstand harsh conditions ensures that the structure can withstand unexpected events and maintain its integrity, making steel angles an essential component in resilient construction practices.
Q: How do you calculate the section modulus of a steel angle?
To calculate the section modulus of a steel angle, you need to know the dimensions and properties of the angle. The section modulus is a measure of the strength of a structural member and is used to determine its resistance to bending. The formula to calculate the section modulus of a steel angle is: Section Modulus (Z) = (Width of the angle * Height of the angle^2) / 6 In this formula, the width of the angle refers to the distance between the two legs, while the height of the angle is the length of one leg. The section modulus is typically expressed in cubic inches or cubic centimeters. To calculate the section modulus, first measure the width and height of the angle. Then substitute these values into the formula to find the section modulus. This value will give you an indication of the strength and stiffness of the steel angle, which can be used in structural design and analysis.
Q: Can steel angles be used for stair treads?
Stair treads can indeed utilize steel angles. Known as angle irons as well, steel angles find frequent application in construction and fabrication due to their robustness and resilience. Acting as stair treads, steel angles furnish a firm base for individuals to ascend or descend the stairs. The inclined form of these steel angles enables superior weight allocation and heightened stability. Furthermore, steel angles can be effortlessly welded or bolted to the stair stringers or supports, rendering them a convenient and dependable selection for stair treads.
Q: Are steel angles fire-resistant?
Yes, steel angles are fire-resistant to a certain extent. Steel is a non-combustible material, meaning it does not burn or contribute fuel to a fire. It has a high melting point, usually around 1370°C (2500°F), which allows it to maintain its structural integrity even under high temperatures. However, it is important to note that while steel itself is fire-resistant, the fire resistance of a structure or component depends on various factors such as the design, size, and configuration of the steel angles, as well as the fire protection measures implemented. Fire protection methods like fire-resistant coatings, fireproofing materials, or fire-resistant insulation can be applied to steel angles to enhance their fire resistance. These additional fire protection measures can provide a certain level of insulation, delaying the transfer of heat to the steel and extending the time it takes for the steel to reach its critical temperature. This allows occupants more time to evacuate the building and firefighters more time to control the fire. In summary, steel angles are inherently fire-resistant due to the properties of steel, but their fire resistance can be further enhanced by implementing appropriate fire protection measures.
Q: How do you calculate the weight of a steel angle?
In order to determine the weight of a steel angle, one must have knowledge of its dimensions and the density of steel. The weight of an object can be determined by using the equation: Weight = Volume × Density For a steel angle, the volume can be obtained by multiplying the cross-sectional area of the angle by its length. The cross-sectional area of the angle can be calculated by multiplying its width by its height. Once the volume is determined, it can be multiplied by the density of steel to find the weight. Let's consider an example where a steel angle has a width of 3 inches, a height of 3 inches, and a length of 6 feet. The density of steel is typically around 7850 kg/m³ or 0.2836 lb/in³. To begin, calculate the cross-sectional area: Area = width × height Area = 3 in × 3 in Area = 9 in² Next, compute the volume: Volume = Area × length Volume = 9 in² × 6 ft × 12 in/ft Volume = 648 in³ Finally, determine the weight: Weight = Volume × Density Weight = 648 in³ × 0.2836 lb/in³ Weight = 183.9828 lb Hence, the weight of the steel angle would be approximately 183.98 pounds.
Q: Can steel angles be used as structural supports?
Yes, steel angles can be used as structural supports. They are commonly used in construction to provide stability and support to various structures such as buildings, bridges, and frameworks. Their unique shape and strength make them ideal for transferring loads and resisting bending forces, making them a reliable choice for structural support.
Q: How do you calculate the critical buckling load for a steel angle?
In order to determine the critical buckling load for a steel angle, one must take into consideration the properties of the angle section and how it interacts with the applied loads. The critical buckling load refers to the maximum load that the angle section can handle before it buckles or fails in a lateral-torsional manner. The initial step involves calculating the section properties of the steel angle, such as its moment of inertia (I) and section modulus (Z). These properties can be obtained either from standard structural design tables or through mathematical calculations. Subsequently, the effective length factor (K) for the angle section needs to be considered. This factor accounts for the angle's end conditions and how it is restrained against buckling. Different end conditions have varying values for K, which can be determined from design codes or engineering references. Once the section properties and effective length factor have been determined, the critical buckling load can be calculated using Euler's buckling equation: Pcr = (π^2 * E * I) / (K * L^2) Here, Pcr represents the critical buckling load, π is a mathematical constant (approximately 3.14159), E denotes the modulus of elasticity of the steel, I signifies the moment of inertia of the angle section, K represents the effective length factor, and L stands for the unsupported length of the angle section. By substituting the appropriate values for E, I, K, and L into the equation, one can calculate the critical buckling load for the steel angle. It is crucial to note that the critical buckling load is a theoretical value and should be compared to the actual applied loads to ensure the safety of the angle section under the given conditions.
Q: Are steel angles resistant to pests or insects?
Pests and insects pose a threat to steel angles as they lack resistance against them. Unlike treated wood and other materials, steel angles do not possess innate abilities to repel or deter pests and insects. Nevertheless, when combined with other pest control methods, steel angles can still serve as an effective solution to prevent damage caused by pests or insects. One approach is to seal off any gaps or openings surrounding the steel angles, thus preventing pests or insects from infiltrating the area. Moreover, conducting regular inspections and maintenance is crucial in promptly identifying and resolving any pest or insect-related concerns before they escalate into significant issues.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords