Grade AISI 4340 CNBM Forged Steel Round Bar
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Grade AISI 4340 CNBM Forged Steel Round Bar
Name | SAE4340 Carbon Steel Round Bar |
Shape | Round Bar/Square Bar/Flat Bar/Plate/Wire |
Standard | GB/ASTM/SAE/AISI/DIN/JIS/EN/BS |
Surface Treatment: | Black/Peeling/Polished/Machined |
Delivery Condition: | Hot Rolled or Forged/Peeled or Black Surface |
Test | SGS/UT 100% Elements Testing |
Certificate: | ISO/Mill Certificate |
Service: | 24 hours online service / |
more than 20 years trading and manufacture | |
Quality Assurance: | the third party inspection, such as SGS, BV, TUV…etc. is acceptable |
Packaging Details: | seaworthy packaging or as per customer's packing instruction |
Machine Capability
Tensile strength (N/mm2Mpa): >=980(100)
Elongation: >=12
Yield strength: >=835(85)
Hardness:( HBS 100/3000)<=269
Reduction of area:>=55
Akv(J)>=78 akv(J/cm2):>=98(10)
Chemical Composition (%):
C | Si | Mn | S | P | Cr | Ni | Cu | Mo |
0.37-0.44 | 0.17-0.37 | 0.40-0.80 | 0.025(max) | 0.025(max) | 0.60-0.90 | 1.25-1.65 | 0.025(max) | 0.15-0.25 |
Packaging & Delivery
Packaging Detail | Sea worthy packing /as per customer's packing instruction |
Delivery Detail | 15 ~ 40 days after receiving the deposit |
Product Show
Workshop
FAQ
Are you a trading company or manufacturer? | Manufacturer |
What’s the MOQ? | 3 metric ton |
What’s your delivery time? | 15-35 days after downpayment received |
Do you Accept OEM service? | Yes |
what’s your delivery terms? | FOB/CFR/CIF |
What's the Payment Terms? | 30% as deposit,70% before shipment by T/T |
Western Union acceptable for small amount. | |
L/C acceptable for large amount. | |
Scrow ,Paybal,Alipay are also ok | |
Why choose us? | Chose happens because of quality, then price, We can give you both. |
Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals. | |
What's your available port of Shipment? | Main Port, China |
What’s your featured services? | Our service formula: good quality+ good price+ good service=customer's trust |
Where are your Market? | Covering more than 160 countries in the world |
- Q:How does special steel contribute to the construction equipment industry?
- The construction equipment industry heavily relies on special steel to ensure the necessary strength, durability, and resistance to wear and tear in their heavy-duty equipment. Extreme conditions, including heavy loads, harsh environments, and constant use, demand the use of special steel alloys that are specifically designed to withstand these challenges and guarantee the equipment's longevity and reliability. One of the major contributions of special steel to the construction equipment industry lies in its impressive strength-to-weight ratio. This characteristic allows manufacturers to design and produce equipment that is both robust and lightweight. Implementing special steel in the construction of crucial equipment components such as chassis, booms, buckets, and blades enhances their load-carrying capacity and overall performance. Additionally, special steel offers exceptional corrosion resistance, which is a significant advantage in construction sites where equipment is exposed to moisture, chemicals, and other corrosive substances. By utilizing corrosion-resistant special steel alloys, manufacturers can extend the lifespan of construction equipment and reduce maintenance costs. Moreover, special steel plays a vital role in providing superior wear resistance. The abrasive materials encountered in construction sites, such as rocks, gravel, and concrete, can cause significant wear on equipment components. Special steel alloys with high hardness and wear resistance properties help minimize wear and prolong the service life of the equipment, reducing the need for frequent replacements and downtime. Furthermore, special steel enables the construction equipment industry to meet specific performance requirements. Various types of special steel alloys can be tailored to meet specific needs, such as impact resistance, high-temperature resistance, or low-temperature toughness. This versatility allows manufacturers to produce equipment that can efficiently operate in diverse conditions, ultimately enhancing the industry's overall productivity. In conclusion, special steel plays a crucial role in the construction equipment industry by providing the necessary strength, durability, resistance to wear and tear, and customization options. By incorporating special steel alloys into their manufacturing processes, equipment manufacturers can produce high-quality machinery that meets the demanding requirements of construction sites, thus improving productivity, safety, and efficiency within the industry.
- Q:What are the main applications of special steel in the marine sector?
- Special steel is widely used in the marine sector for various applications. Some of the main applications include shipbuilding, offshore oil and gas exploration, and marine equipment manufacturing. Special steel is used to construct the hulls and superstructures of ships, as well as various components such as propellers, shafts, and rudders. Its high strength, durability, and corrosion resistance make it ideal for withstanding the harsh conditions of the marine environment. Additionally, special steel is also used in the construction of offshore platforms, pipelines, and underwater structures, as it can withstand extreme pressures and resist corrosion caused by saltwater.
- Q:What are the specific requirements for special steel used in nuclear applications?
- Special steel used in nuclear applications has specific requirements to ensure its suitability and safety within the highly demanding and sensitive nuclear environment. These requirements are designed to guarantee the integrity and performance of the steel in various conditions, including extreme temperatures, radiation exposure, and corrosive environments. One of the primary requirements for special steel used in nuclear applications is high strength and toughness. The steel must possess excellent mechanical properties to withstand the immense pressure and stress that it will experience during operation. This enables the steel to resist deformation, cracking, and failure, ensuring the structural integrity of nuclear components. Another crucial requirement is the ability to withstand high temperatures and thermal cycling. Nuclear reactors operate at elevated temperatures, and the steel must retain its mechanical properties even under extreme thermal conditions. This prevents any degradation or loss of strength that could compromise the safety and efficiency of the nuclear system. Furthermore, special steel used in nuclear applications must exhibit exceptional resistance to corrosion and oxidation. The nuclear environment can be highly corrosive due to the presence of various chemicals and coolants, such as water, steam, and coolant gases. The steel must possess a high level of corrosion resistance to prevent any degradation or material loss, which could lead to leaks or failures. Radiation resistance is also a critical requirement for special steel used in nuclear applications. Nuclear reactors emit ionizing radiation, which can damage the structure and properties of conventional materials. Therefore, the steel must have a high resistance to radiation-induced embrittlement and degradation, ensuring its long-term performance in a radioactive environment. Additionally, the steel used in nuclear applications must comply with strict quality control and certification standards. These standards ensure the steel's traceability, material composition, and manufacturing processes, guaranteeing its reliability and compliance with regulatory requirements. Quality control measures include non-destructive testing, ultrasonic examinations, and material certification. Overall, the specific requirements for special steel used in nuclear applications encompass high strength, toughness, thermal stability, corrosion resistance, radiation resistance, and adherence to stringent quality control standards. Meeting these requirements is crucial to ensure the safe and reliable operation of nuclear systems while mitigating potential risks associated with the nuclear environment.
- Q:What are the common alloying elements in special steel?
- Special steel commonly contains alloying elements such as chromium, nickel, molybdenum, and vanadium. The addition of chromium improves the steel's resistance to corrosion and increases its hardness. Nickel is utilized to enhance the steel's toughness and ability to withstand extreme temperatures. Molybdenum is frequently incorporated to strengthen the steel and improve its resistance to wear and corrosion. Vanadium, on the other hand, is recognized for its capability to increase the steel's hardness and strength, making it ideal for applications that necessitate high durability. These alloying elements are meticulously chosen and included in special steel to attain specific properties and fulfill the distinctive demands of various industries including automotive, aerospace, and construction.
- Q:Can special steel be used for making food processing equipment?
- Food processing equipment can indeed be made using special steel. Known as stainless steel, this type of steel is widely utilized in the food processing industry due to its distinctive characteristics. Stainless steel, being non-reactive, does not interact with food or change its taste, smell, or appearance. Furthermore, it is resistant to corrosion, a crucial feature in safeguarding against contamination and ensuring food safety. Additionally, special steel is long-lasting, easy to clean, and possesses a smooth surface that hinders bacterial growth. These attributes render it an excellent choice for producing food processing equipment such as mixing tanks, conveyors, cutting tools, and storage containers.
- Q:How does special steel perform in terms of magnetic permeability?
- Special steel typically has a lower magnetic permeability compared to other materials, meaning it has a weaker response to magnetic fields.
- Q:What are the requirements for special steel used in power generation equipment manufacturing?
- The requirements for special steel used in power generation equipment manufacturing are quite stringent. First and foremost, this type of steel must possess high strength and durability to withstand the extreme operating conditions and loads experienced in power generation equipment. This includes withstanding high temperatures, pressure, and mechanical stress. Additionally, special steel used in power generation equipment must exhibit excellent resistance to corrosion and oxidation. As power generation equipment often operates in harsh environments, such as high humidity or exposure to corrosive substances, the steel must have a high level of resistance to ensure its longevity and performance. Furthermore, the steel used in power generation equipment must have good weldability and formability. This is crucial for the manufacturing process, as complex shapes and structures are often required in power generation equipment, and the ability to weld and form the steel accurately is essential. Another important requirement for special steel in power generation equipment is its ability to maintain its mechanical properties at elevated temperatures. Power generation equipment, such as boilers or turbines, operates at high temperatures, and the steel used must retain its strength, creep resistance, and dimensional stability under these conditions. Lastly, special steel for power generation equipment must conform to industry standards and specifications. These standards ensure the quality, reliability, and safety of the steel used in power generation equipment manufacturing. Compliance with these standards is crucial to ensure the performance and longevity of the equipment. Overall, the requirements for special steel used in power generation equipment manufacturing are demanding, encompassing high strength, durability, resistance to corrosion and oxidation, good weldability and formability, heat resistance, and compliance with industry standards. Meeting these requirements is vital to ensure the efficient and reliable operation of power generation equipment.
- Q:What are the different joining processes for special steel?
- There are several different joining processes for special steel, including welding, brazing, and soldering. Welding involves melting the base metals and adding a filler material to create a strong bond. Brazing involves heating the base metals and using a filler material with a lower melting point to join them together. Soldering is a similar process to brazing, but it uses a filler material called solder with an even lower melting point. These joining processes are used to create durable and reliable connections in special steel applications.
- Q:How is special steel used in the production of bearings for high-speed applications?
- Special steel is used in the production of bearings for high-speed applications due to its unique properties such as high strength, hardness, and resistance to wear and fatigue. These bearings are subjected to intense loads and rotational speeds, and special steel helps ensure optimal performance and longevity. The use of special steel in bearing production allows for improved precision, reduced friction, and increased durability, ultimately enabling bearings to withstand the demanding requirements of high-speed applications.
- Q:How is special steel used in the manufacturing of tools and dies?
- Due to its exceptional properties, special steel is widely utilized in the production of tools and dies. Also known as tool steel, special steel is specifically engineered to possess high hardness, wear resistance, toughness, and heat resistance. When it comes to tool manufacturing, such as drills, saws, hammers, and chisels, special steel is employed to guarantee durability and prolonged tool lifespan. The high hardness of special steel enables these tools to endure the demands of cutting, drilling, and shaping without easily becoming dull or deformed. Moreover, the wear resistance of special steel ensures that these tools can maintain their sharp cutting edges for an extended period, reducing the need for frequent sharpening or replacement. Furthermore, in the manufacture of dies used in various manufacturing processes, special steel plays a vital role. Dies are utilized to shape materials into specific forms or sizes, such as in forging, stamping, or extrusion processes. Thanks to the high toughness of special steel, dies can withstand the high pressure and impact forces involved in these processes without cracking or fracturing. Additionally, the heat resistance of special steel ensures that dies can endure the elevated temperatures generated during these operations without losing their shape or hardness. Special steel also possesses excellent machinability, making it easy to shape and form into intricate tool and die designs. This quality holds great significance in manufacturing, as it allows for the production of precise and intricate tools and dies, resulting in improved product quality and efficiency. Overall, special steel is a crucial material in the production of tools and dies due to its outstanding hardness, wear resistance, toughness, heat resistance, and machinability. These properties guarantee the durability, prolonged tool lifespan, and high performance of tools and dies, thus contributing to the overall efficiency and quality of various manufacturing processes.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Grade AISI 4340 CNBM Forged Steel Round Bar
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords