• Forged Alloy Steel Round Bar 42CrMo4 Special Steel System 1
  • Forged Alloy Steel Round Bar 42CrMo4 Special Steel System 2
  • Forged Alloy Steel Round Bar 42CrMo4 Special Steel System 3
Forged Alloy Steel Round Bar 42CrMo4 Special Steel

Forged Alloy Steel Round Bar 42CrMo4 Special Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,BSI,UL,API
Thickness:
as required
Length:
as required
Net Weight:
as required

Forged Alloy Steel Round Bar 42CrMo4

Characteristics

1) Even material.
2) Good machinability and polishability.
3) High toughness and high plasticity.
4)  High abrasive resistance in high temperature.
5) Excellent total hardenability.
6) Low deformability during heat treatment.
7) Better isotropy.
Application
1) Diecasting mould(mold, fixed block, upper die, jet nozzle, nitride thimble ).
2) Extrusion die(mold, supporting member,  choke blocks).
3) Hot press die. (aluminum, magnesium, copper alloy)
4) Parts, such as cold cutting, overlap, hot shears, wearable parts.
5) Important parts for aviation industry.

Carbon Steel Round Bar

SS400, S235JR,Q235, ASTM A36, Fe360A, Fe360B,SM400A,080A15, SS41,E235B

SAE 1020, AISI 1020, ASTM 1020, S20C, 20#, 050A20

SAE 1045, AISI 1045, ASTM 1045, S45C, 45#,EN8, XC45, XC48, 45B, C45, CK45, CM45, 060A47, R683/IC45e

Alloy Steel Round Bar

40Cr, DIN 1.7035, SAE 5140, AISI 5140, ASTM 5140, SCr440, 41Cr4, 530A40, 42Cr4, 40X, R683/VII3

SAE4140,42CrMo, 42CrMo4, DIN 1.7225, SCM440,EN19, 42CD4, 708M40, R683/II3

SAE 4340, 40CrNiMoA, EN24, SNCM439, 817M40,40XMA, R683/III4

SAE 8620,,AISI 8620, ASTM 8620, 20CrNiMo,SNCM220, 805M20

SAE52100, AISI52100,ASTM E52100, GCr15, SUJ2, 100C6, 100Cr6, 1.3505, 534A99, IIIX15

Product show

.jpg


Workshop show

Forged Alloy Steel Round Bar 42CrMo4 Special Steel


Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement



Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: What is the significance of carbon content in special steel?
The carbon content in special steel is significant as it determines the steel's strength, hardness, and overall performance. Higher carbon content usually results in increased hardness and strength, making it suitable for applications that require high durability and resistance to wear. On the other hand, lower carbon content enhances the steel's ductility and ease of machining. The right balance of carbon content in special steel allows manufacturers to tailor the material to specific needs, ensuring optimal performance in various industries such as automotive, aerospace, and construction.
Q: How does special steel contribute to the machinability of products?
Special steel contributes to the machinability of products by offering enhanced properties such as higher strength, improved wear resistance, and increased hardness. These qualities allow for easier cutting, shaping, and forming during the machining process. Additionally, special steel may contain alloying elements that improve its thermal conductivity and reduce the risk of deformation or cracking, leading to better overall machinability.
Q: Can special steel be used in the pharmaceutical manufacturing equipment manufacturing industry?
Yes, special steel can be used in the pharmaceutical manufacturing equipment manufacturing industry. Special steel alloys such as stainless steel are commonly used due to their corrosion resistance, durability, and ability to withstand high temperatures and harsh chemicals. These qualities make special steel a suitable choice for various equipment used in pharmaceutical manufacturing, including tanks, reactors, mixers, and piping systems.
Q: What are the future trends in special steel manufacturing?
Some of the future trends in special steel manufacturing include advancements in technology and automation, increased focus on sustainability and environmental impact, development of new alloys and materials with enhanced properties, and growing demand for specialized steels in industries like aerospace, automotive, and renewable energy. Additionally, there is a shift towards customization and tailored solutions to meet specific customer requirements, as well as an emphasis on research and development to drive innovation in the field.
Q: How does special steel contribute to reducing weight in applications?
Special steel can contribute to reducing weight in applications in several ways. Firstly, special steel alloys can be designed to have high strength-to-weight ratios, meaning that they can provide the same level of strength and performance as other materials, such as traditional steel or aluminum, but with less weight. By using special steel in place of heavier materials, manufacturers can reduce the overall weight of the application without compromising its structural integrity. Additionally, special steel can be manufactured with improved fatigue resistance and durability properties, which allows for the use of thinner and lighter sections without sacrificing strength. This is particularly important in industries where weight reduction is critical, such as automotive and aerospace, as it enables the production of lighter vehicles or aircraft, resulting in improved fuel efficiency and reduced emissions. Furthermore, special steel can also contribute to weight reduction through its versatility in manufacturing processes. It can be easily formed, shaped, and welded, allowing for the creation of complex and lightweight structures. This flexibility in fabrication methods allows engineers to optimize the design and maximize weight savings by using special steel in innovative ways. In summary, special steel contributes to reducing weight in applications by offering high strength-to-weight ratios, improved fatigue resistance, and durability, as well as providing flexibility in manufacturing processes. These qualities make special steel an ideal choice for industries seeking weight reduction, ultimately leading to enhanced performance, efficiency, and sustainability.
Q: How is structural steel used in building construction?
Structural steel is a crucial material in building construction as it provides strength, durability, and flexibility to the overall structure. It is used to create the framework or skeleton of a building, including beams, columns, and trusses. These steel components support the weight of the building and distribute it evenly, ensuring stability and safety. Additionally, structural steel can be easily fabricated and assembled on-site, making it a cost-effective and efficient solution for various types of construction projects.
Q: How does special steel contribute to the mining industry?
Special steel plays a crucial role in the mining industry by providing the necessary strength, durability, and resistance to extreme conditions required for various mining equipment and machinery. It is used in the manufacturing of drill bits, excavator buckets, conveyor systems, crushers, and other mining tools. Special steel's exceptional properties allow for increased efficiency, reduced downtime, and improved safety in mining operations, ultimately contributing to enhanced productivity and profitability in the industry.
Q: How is special steel used in the production of automotive springs?
Special steel is used in the production of automotive springs due to its high strength and durability properties, which are essential for supporting the weight of the vehicle and providing a smooth ride. The special steel's unique composition and manufacturing processes ensure that the springs can withstand repeated stress and maintain their shape over time, enhancing the overall performance and safety of the vehicle.
Q: What are the different methods for improving the corrosion resistance of special steel?
There are several methods for improving the corrosion resistance of special steel. 1. Alloying: One of the most common methods is to add alloying elements to the steel composition. These elements, such as chromium, nickel, and molybdenum, form a protective layer on the surface of the steel, preventing corrosion. Stainless steel, for example, contains a high amount of chromium, which forms a passive film that protects the steel from corrosive environments. 2. Surface treatments: Various surface treatments can be applied to special steel to enhance its corrosion resistance. These treatments include electroplating, hot-dip galvanizing, and chemical passivation. Electroplating involves coating the steel with a layer of metal, such as zinc or nickel, which acts as a sacrificial anode, protecting the steel from corrosion. Hot-dip galvanizing involves immersing the steel in molten zinc, forming a durable, corrosion-resistant coating. Chemical passivation involves treating the steel with a solution that removes surface impurities and forms a protective oxide layer. 3. Protective coatings: Applying protective coatings can significantly improve the corrosion resistance of special steel. Coatings such as paint, epoxy, or polyurethane can act as a barrier, preventing moisture and corrosive substances from coming into contact with the steel surface. These coatings can be applied by spray, dip, or powder coating methods. 4. Heat treatment: Heat treatment can modify the microstructure of special steel, improving its corrosion resistance. Processes such as annealing, quenching, and tempering can alter the steel's properties, making it more resistant to corrosion. Heat treatment can also relieve internal stresses, which can contribute to corrosion. 5. Environmental control: Controlling the environment in which the special steel is used can also help improve its corrosion resistance. This includes measures such as maintaining proper humidity levels, controlling pH, avoiding exposure to corrosive chemicals, and implementing effective ventilation systems. By minimizing the exposure of special steel to corrosive elements, its corrosion resistance can be enhanced. Overall, a combination of these methods can be employed to improve the corrosion resistance of special steel, ensuring its longevity and performance in corrosive environments.
Q: What is the role of research and development in advancing special steel technology?
Research and development (R&D) plays a crucial role in advancing special steel technology. Special steel refers to steel alloys that are specifically designed to possess enhanced properties such as high strength, corrosion resistance, heat resistance, or electrical conductivity. R&D activities are essential for pushing the boundaries of special steel technology and developing new and improved alloys. Through continuous research, scientists and engineers are able to explore new compositions, manufacturing processes, and heat treatment techniques to enhance the properties and performance of special steels. One of the primary roles of R&D in advancing special steel technology is the discovery and development of new alloy compositions. R&D teams analyze the properties of different elements and their interactions to design steel alloys with desired characteristics. This involves conducting experiments, testing various compositions, and optimizing the alloy to meet specific application requirements. By fine-tuning the composition, R&D helps in enhancing the strength, hardness, toughness, or other desirable properties of special steels. Furthermore, R&D also focuses on developing innovative manufacturing processes for special steel production. These processes involve advanced techniques such as vacuum melting, rapid solidification, or powder metallurgy to obtain a refined microstructure and improved mechanical properties. R&D teams work on optimizing these processes to enhance the overall quality, efficiency, and cost-effectiveness of special steel production. Another crucial role of R&D is the improvement of heat treatment techniques for special steels. Heat treatment is a critical step in the fabrication of special steels as it helps to achieve desired microstructures and properties. R&D endeavors to optimize the heat treatment parameters, such as temperature, time, and cooling rates, to enhance the mechanical properties and performance of special steels. In addition to alloy composition, manufacturing processes, and heat treatment, R&D also plays a vital role in developing new testing and characterization methods for special steels. This enables the evaluation and validation of the properties and performance of these steels under various conditions. Advanced testing techniques such as electron microscopy, X-ray diffraction, and mechanical testing are employed to assess the microstructural features, phase transformations, and mechanical behavior of special steels. Overall, research and development activities are indispensable for advancing special steel technology. Through continuous research, innovation, and optimization, R&D teams contribute to the development of new and improved alloys, manufacturing processes, heat treatment techniques, and testing methods, ultimately leading to the advancement of special steel technology and its applications in various industries such as automotive, aerospace, energy, and construction.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords