• DUCTILE IRON PIPES C Class DN300 System 1
  • DUCTILE IRON PIPES C Class DN300 System 2
DUCTILE IRON PIPES C Class DN300

DUCTILE IRON PIPES C Class DN300

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Ductile Iron Cast Pipe is without any defects compare with tradition casting tech, which has many advantages particularly as follow:

(1) High density. In the "vertical upward casting" process, the melt iron of centre liquid column in center crystallizer is continuously feeding for volume shrinkage caused by condensation tube at outer circumference , which lead to be free of shrinkage porosity.

(2) High purity. When melt iron pouring, the mixed impurities such as gas, dross, sand grain which are lighter than melt iron could be eliminated at furnace mouth, its impossible to enter into the crystallizer through the channel, so the melt iron into the crystallizer is very pure.

(3) Strength with toughness. The cooling speed provided by continuous crystallizer is 30 times than sand casting and 5 times than centrifugal casting, and doesn't produce white iron, the eutectic cell volume of continuous cast iron is one eighth to one tenth compare with traditional cast iron. The density of graphite nodule in ductile iron can reach 300-700 pcs/mm2. Therefore, all reason above improve the strength and toughness of continuous cast iron.

(4) Free machining. The high speed cooling make the hardening phase (such as boride, steadite) not appear like reticular, massive or thick, but diffuse like fish bone and pane in shape, moreover, there are tiny graphite flakes inlaid hardening phase. It's free machining in BrinellHardness the range of 250-300HB. However, the Brinell Hardness of 250 is top limit to common metal materials.

(5) Uniform composition of tube wall. The convection mixing of liquid column caused by marching type drawing in crystallizer make the composition of tube wall well-distributed, and concentration gradient very little.

(6) High productivity. To the wall thickness of tube under 10mm, the speed of continuous casting is 1 meter/min, to the wall thickness of tube under 20mm, the speed of continuous casting is 0.5 meter/min, which is high efficiency that centrifugal or other casting tech couldn't reach.


Q: How are ductile iron pipes installed?
Typically, the installation of ductile iron pipes follows a specific process. Firstly, the required depth and width of the trench are excavated. Careful leveling and compaction of the trench's bottom then establish a stable foundation. Next, a bedding material, usually a mixture of sand and gravel, is placed at the trench's bottom. This material supports the pipe and distributes the load evenly, while also safeguarding it from any sharp objects in the soil. Once the bedding is prepared, the ductile iron pipes are gently lowered into the trench and aligned as desired. Proper alignment and the correct slope are essential for efficient water flow. Subsequently, the pipes are joined together using either a mechanical joint or a push-on joint system. These joints are designed to create a secure, leak-free connection between the pipes. Rubber gaskets are typically used to seal the joints and establish a watertight seal. After joining the pipes, the trench is backfilled with the excavated soil. Care is taken to compact the soil in layers to prevent settlement. The backfilling process is typically carried out in stages to ensure proper compaction. Lastly, the installation is completed by connecting the ductile iron pipes to the existing water supply system or other pipes using appropriate fittings and valves. Pressure testing may also be conducted to verify the installation's integrity. In conclusion, the installation of ductile iron pipes necessitates meticulous planning, precise alignment, and secure jointing to establish a durable and dependable water supply system.
Q: Are ductile iron pipes suitable for use in geothermal applications?
Yes, ductile iron pipes are suitable for use in geothermal applications. They possess excellent strength and corrosion resistance, making them resistant to the high temperatures and corrosive nature of geothermal fluids. Additionally, their ductility allows them to withstand the expansion and contraction associated with geothermal systems, making them a reliable choice for such applications.
Q: QT400-10 nodular cast iron requires hardness of HRC47~51. Why can't quench hardness be reached?
QT400-10 shall ensure sufficient pearlite in the casting state, at least half of the pearlite. This is done with the temperature, time, and water. But if it is big, the heart hardness will not go up.
Q: Can ductile iron pipes be used for irrigation systems?
Certainly, irrigation systems can utilize ductile iron pipes. These pipes possess exceptional strength and durability, rendering them appropriate for a wide range of uses, including irrigation. They exhibit resistance to corrosion and boast a lengthy lifespan, guaranteeing their ability to endure the challenging conditions frequently associated with irrigation systems. Moreover, ductile iron pipes possess a sleek inner surface, facilitating efficient water flow and minimizing friction loss. This renders them highly suitable for the transportation of water over extensive distances, thereby ensuring the thorough irrigation of crops or landscapes. In summary, ductile iron pipes represent a dependable and economically viable option for irrigation systems.
Q: What's the function of the cement mortar lining of ductile iron pipes?
In brief, the cement mortar lining system has the following advantages:1. provide active protection better than barrier coating2. meet both national and international standards for contact with potable water3. can be used in the strict requirements of the occasion4. strong and shock resistant5. suitable for a wide range of applications6. easy to repair7. over 100 years of service life
Q: What is the typical weight of ductile iron pipe?
The typical weight of ductile iron pipe varies depending on the diameter and wall thickness, but it typically ranges from 10 to 64 pounds per linear foot.
Q: What are the different joint types available for ductile iron pipes?
Ductile iron pipes offer various joint types that are essential for maintaining the integrity and reliability of the pipeline system. 1. The push-on joint is the most prevalent joint used for ductile iron pipes. It involves inserting a rubber gasket into the bell end of the pipe and then pushing the spigot end into the bell, ensuring a tight seal. This joint is easy to assemble, quick, and has excellent resistance against soil movement and water pressure. 2. The mechanical joint involves a gland and follower that are secured around the spigot end of the pipe using bolts and nuts. It provides a robust and durable connection and is commonly used for larger diameter pipes or applications that expect higher pressure or thrust loads. 3. Flanged joints are utilized when connecting pipes to other components like valves or fittings. The pipe ends are machined and equipped with flanges that are bolted together using gaskets, ensuring a secure connection. These joints find frequent use in industrial applications or situations requiring frequent disassembly. 4. Restrained joints are designed to withstand significant external forces and prevent separation or pulling apart of the pipe. They typically combine mechanical joint components, such as bolts and glands, with additional restraining elements like welded or bolted-on restraints. These joints are commonly employed in high-pressure applications or situations where substantial external forces are present. Choosing the appropriate joint type is crucial and depends on factors such as pipeline design, operating conditions, and installation requirements. Seeking guidance from experienced engineers or pipe manufacturers can aid in determining the most suitable joint type for a specific ductile iron pipe application.
Q: How do ductile iron pipes perform in earthquake-induced ground movements?
Ductile iron pipes perform well in earthquake-induced ground movements due to their inherent strength and flexibility. The material's ductility allows it to withstand ground shaking, ground settlement, and other dynamic forces during an earthquake. This flexibility helps prevent the pipes from fracturing or bursting, minimizing the risk of water or sewage leaks. Additionally, ductile iron pipes are designed to accommodate ground movements by using joints that can expand and contract, ensuring their stability and preventing damage.
Q: What is the difference between flexible joint mechanism and seismic cast iron pipe DN100 and ductile iron pipe?
The ball compressive strength of ductile iron pipe is much higher than that of cast iron pipes, buried in the ground, the car is not easy to be crushed.
Q: Can ductile iron pipe be used for municipal water supply?
Yes, ductile iron pipe can be used for municipal water supply. Ductile iron pipe has excellent strength and durability, making it suitable for carrying the high-pressure water supply required for municipal systems. Additionally, its corrosion resistance and long lifespan make it a reliable choice for transporting water in urban areas.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords