Ductile Iron Pipe of China On Sale DI Pipe DN250 EN598
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
1. Ductile Iron Pipe Description :
1) Pipes confirm to ISO2531,K9 class,T type joint,6m long,with inside cements lining conform to ISO4179, outside Zinc spraying(130g/m2) and bitumen coating(70μm) conform to ISO8179.
2) Pipe ends: Spigot and socket ends, with 100% SBR rubber gaskets accoding to ISO4633
3) we can do third party inspection according to customer's request.
4) Our products have been sold to many international market, such as Middle East and South East Asia and Africa.
2. Main Features of the Ductile Iron Pipe:
•High yield strength
•High tensile Strength
•High corrosion resistance
•Pressure Resistence
•Anti-corrosion
•Installation is convenient
•Satisfy the highest hygienic standards
3. Ductile Iron Pipe Images:
4. Ductile Iron Pipe Specification
Standard: API SPEC 5L 44th eidtion,ASTM A252-98(2007)
Grade: A53 Grades A/B, ASTM A106 Grades B/C,ASTM A179,AWWA, C200, ASTM A139, ASTM A120, API 5L Grade B,X42, X52, X56, X60, X65, X70, X80, X100
Weld Alternatives: LSAW
OD size range: 6.4~44.5mm
Wall thickness: 406.4~1422mm
Length: 3 - 12 m according to requirment
Note: Other grade can also be provided after consulting. Special design are available
5. FAQ:
We have organized several common questions for our clients,may help you sincerely:
1).Q: Why would you choose ductile iron pipe rather than other pipe materials?
A:The reasons are obvious for that not only ductile iron pipe possesses the inherent strength and flexibility of ductile iron, combined with proven corrosion protection systems, but also the cost savings can be achieved from design to installation and commissioning.
2).Q:Why can you guarantee the inner of pipes can’t be corroded?
A: High alumina cement mortar lining and sulphate-resistant cement mortar lining. These two special linings are applicable to inner anti-corrosion for sewage pipes, improving resistance to erosion of the sewage components.
- Q: Are ductile iron pipes suitable for installation in areas with high groundwater salinity?
- Yes, ductile iron pipes are generally suitable for installation in areas with high groundwater salinity. Ductile iron is known for its corrosion resistance, making it a preferred choice in such environments. However, it is crucial to consider the specific salinity levels and consult with experts to ensure proper pipe coating and protection measures are in place to prevent any potential corrosion or degradation.
- Q: How do ductile iron pipes handle water velocity?
- Due to their unique mechanical properties, ductile iron pipes are well-suited for managing water velocity. Ductile iron, being a highly durable and strong material, can endure high water velocities without significant damage or deformation. The inherent ductility of the pipe enables it to absorb the energy generated by the flowing water, effectively reducing the risk of pipe failure or bursting. This characteristic makes ductile iron pipes suitable for handling high-pressure water flow, making them an ideal choice in situations where water velocity is a concern. Furthermore, the smooth internal surface of ductile iron pipes promotes efficient water flow and minimizes friction losses. This smoothness reduces resistance encountered by the water as it moves through the pipe, allowing for higher water velocities without compromising the pipe's integrity. Moreover, ductile iron pipes can be manufactured in various sizes and thicknesses, providing customization options based on specific water velocity requirements. This flexibility ensures that ductile iron pipes can effectively manage a wide range of water velocities, from low-flow applications to high-velocity scenarios. In conclusion, ductile iron pipes possess exceptional capabilities when it comes to handling water velocity. Their strength, ductility, and smooth internal surface contribute to their ability to withstand high water velocities without compromising their structural integrity, making them a dependable choice for water distribution systems.
- Q: Are ductile iron pipes suitable for road crossings?
- Indeed, road crossings can indeed be suitably accommodated by ductile iron pipes. Given its robustness and durability, ductile iron proves to be exceedingly appropriate for subterranean installations, specifically road crossings. These pipes exhibit remarkable tensile strength, enabling them to endure substantial loads and traffic pressures without succumbing to fractures or breakages. Moreover, ductile iron pipes showcase exceptional resistance to corrosion, guaranteeing their durability even in the harshest of environments. Not to mention, their effortless installation and upkeep render them a dependable option for road crossings.
- Q: What are the common methods for leak detection in ductile iron pipes?
- Professionals in the field commonly utilize various techniques to detect and locate leaks in ductile iron pipes. These methods play a crucial role in timely leak identification. 1. Acoustic Leak Detection: By employing specialized equipment, professionals listen for the sound of water escaping from the pipe. This equipment detects the leak's sound and aids in pinpointing its exact location. This technique is effective for both pressurized and non-pressurized pipes. 2. Visual Inspection: Physically inspecting the pipe system for visible signs of leaks, such as water stains, wet spots, or puddles, constitutes visual inspection. This relatively straightforward method proves effective in detecting visible leaks in accessible areas. 3. Pressure Testing: During installation or maintenance, pressure testing involves pressurizing the pipe system and monitoring pressure drops. A decrease in pressure signifies the presence of a leak. This method is particularly useful for identifying leaks in inaccessible areas. 4. Infrared Thermography: Infrared cameras detect leaks by measuring temperature variations. The camera can identify temperature differences caused by water escaping from a pipe. This technique is especially efficient in identifying concealed leaks behind walls or underground. 5. Tracer Gas Testing: Tracer gas testing entails injecting a specific gas, such as helium or hydrogen, into the pipe system. In the event of a leak, the gas escapes and can be detected using specialized equipment. This highly sensitive method can locate even minute leaks. 6. Soil Gas Monitoring: Monitoring the soil surrounding the pipe allows professionals to detect gases emitted by leaking water. Analyzing the composition of the soil gas aids in determining the leak's location. It is essential to consider the specific circumstances, such as pipe system size, accessibility, and leak severity when selecting a method. Combining multiple techniques may be necessary to ensure accurate and comprehensive leak detection.
- Q: How are ductile iron pipes manufactured?
- Ductile iron pipes are produced using a technique called centrifugal casting, which employs a spinning mold. The process commences with the selection and preparation of top-notch ductile iron, a form of cast iron containing small quantities of magnesium to enhance its strength and ductility. Initially, the ductile iron is melted in a furnace at exceedingly high temperatures. Once the molten iron attains the desired temperature, it is poured into a rotating mold. Shaped like a pipe, the mold spins at a high speed, ensuring even distribution of the molten iron along its inner surface. While the mold spins, the molten iron cools and solidifies against the mold walls. This swift cooling leads to the formation of a fine-grained structure, thereby augmenting the mechanical properties of the pipe, including its strength and durability. The spinning mold continues to rotate until the pipe solidifies completely, typically within a few minutes. Upon solidification, the pipe is extracted from the mold and any excess material, referred to as the "skin," is eliminated. Typically, machining or grinding is employed to remove the skin, achieving the desired dimensions and surface finish. Subsequently, the pipe undergoes heat treatment to further enhance its mechanical properties and alleviate internal stresses. After the completion of heat treatment, the pipe undergoes a thorough inspection to identify any defects or imperfections. This inspection encompasses visual examinations, non-destructive testing methods, and pressure testing to ensure compliance with the required specifications and standards. If any defects are detected, the severity of the issue determines whether the pipe undergoes repair or is rejected. Lastly, the pipes are coated with a protective layer to prevent corrosion and extend their lifespan. This protective coating can be applied through various methods, such as cement mortar lining, epoxy coating, or zinc coating. In summary, the manufacturing process of ductile iron pipes encompasses iron melting, centrifugal casting, cooling, skin removal, heat treatment, inspection, and coating. This process guarantees the production of high-quality pipes characterized by exceptional strength, durability, and resistance to corrosion.
- Q: Can ductile iron pipes be used in agricultural applications?
- Yes, ductile iron pipes can be used in agricultural applications. Ductile iron pipes have excellent strength and durability, making them suitable for various agricultural purposes. They can be used for irrigation systems, water supply pipelines, and drainage systems in farms and agricultural fields. Ductile iron pipes are resistant to corrosion and have a long lifespan, which is crucial for agricultural applications where the pipes are exposed to various environmental factors and chemicals. Additionally, ductile iron pipes have the ability to withstand high-pressure water flow, making them ideal for transporting water for irrigation purposes. Overall, ductile iron pipes are a reliable and efficient choice for agricultural applications due to their strength, durability, corrosion resistance, and ability to handle high-pressure water flow.
- Q: How do ductile iron pipes handle thermal cycling in industrial applications?
- Ductile iron pipes are well-suited for handling thermal cycling in industrial applications. Due to their high thermal conductivity and low thermal expansion coefficient, they can effectively and safely withstand the stresses caused by repeated heating and cooling cycles. This makes them highly resistant to cracking, distortion, or other forms of thermal damage, ensuring their durability and reliability in industrial environments.
- Q: How are ductile iron pipes protected against internal corrosion caused by chemicals?
- Ductile iron pipes are protected against internal corrosion caused by chemicals through a combination of several protective measures. Firstly, these pipes are usually lined with a cement mortar lining or an epoxy coating. This lining acts as a barrier between the chemical substances in the water or sewage and the iron material of the pipe, preventing direct contact and corrosion. In addition to the lining, a corrosion-resistant polymer or bituminous coating is often applied to the exterior of the ductile iron pipes. This coating serves as an extra layer of protection, safeguarding the pipe against any external chemical exposure that may occur. Furthermore, cathodic protection is commonly employed to prevent internal corrosion. This technique involves the use of sacrificial anodes, typically made of zinc or magnesium, which are attached to the pipe. The anodes corrode over time instead of the iron, effectively sacrificing themselves to protect the pipe from corrosion caused by chemicals. Regular maintenance and monitoring of the ductile iron pipes are also crucial in preventing and addressing any potential corrosion issues. This includes routine inspections, cleaning, and repairing any damaged or corroded areas promptly. Overall, the combination of lining, external coating, cathodic protection, and maintenance practices ensures that ductile iron pipes are well-protected against internal corrosion caused by chemicals, prolonging their lifespan and ensuring the integrity of the pipeline system.
- Q: Are there any specific standards or specifications for ductile iron pipes?
- Yes, there are specific standards and specifications for ductile iron pipes. The most widely recognized standards for ductile iron pipes include ISO 2531, EN 545, and ASTM A536. These standards outline the requirements for the material composition, physical properties, dimensions, and testing methods of ductile iron pipes. Additionally, different countries or regions may have their own specific standards or specifications for ductile iron pipes.
- Q: What is the difference between a PE fire hose and a ductile iron pipe?
- Cast iron pipe: cast pipe made of cast iron. Cast iron pipes are used for water supply, drainage and gas transmission lines. They include cast iron pipes and pipe fittings. Labor intensity is small. According to the casting method, it is divided into continuous cast iron pipe and centrifugal cast iron pipe, in which the centrifugal cast iron pipe is divided into sand mould and metal type two kinds. Divided into gray cast iron pipe and nodular cast iron pipe according to different material. According to the interface form, it is divided into flexible interface, flange interface, self anchored interface, rigid interface and so on. Among them, the flexible iron pipes rubber sealing ring; flange interface cast iron pipe flange fixed in the rubber pad, the flange gasket sealing; rigid interface cast iron pipe socket is large, straight pipe is inserted, sealed with cement, this technology has been basically eliminated.
Send your message to us
Ductile Iron Pipe of China On Sale DI Pipe DN250 EN598
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords