• C45 Steel Round Bar for Constructure Material System 1
  • C45 Steel Round Bar for Constructure Material System 2
C45 Steel Round Bar for Constructure Material

C45 Steel Round Bar for Constructure Material

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

C45 Steel Round Bar for Constructure Material


Product Description:

1. Sizes: Diameter: 16mm-300mm; Length: 6m, 9m, 12m

2. Grade: 45#, astm1045, S45C,C45

3. Invoicing on theoretical weight or actual weight as customer’s request

4. Shape: Round bar, solid bar of steel with circular section

5. Technique: Hot rolled, forged, cold rolled


Chemical Composition:

C

Si

Mn

P

S

Ni

Cr

Cu

0.42-0.50

0.17-0.37

0.50-0.80

≤0.035

≤0.035

≤0.30

≤0.25

≤0.25

 

Packing and Delivery:

Packing in bundle with steel strips and shipped by break bulk vessel or container (depend on target market and different ports)

Delivery Detail: Approx.45 days

 

Usage and Applications
1. Steel round bar is used in a large number of architectural and engineering structures. Or it can be used in construction of plants for the production of steel house frames, high-voltage transmission towers, bridges, vehicles, boilers, containers, ships, etc.

2. And we can use this kind of product on the performance of the mechanical parts if the demand is not very high.

3. Some especial material steel round bar can be used for main shaft of steamer, hummer shank, with big section and supper force.

 

Specification:

OD

Length

Material

Standard

Technique

16-260mm

6-12m or  aques per request

20#

GB ASTM  DIN

Hot  rolled

16-350mm

45#

200-500mm

45#

Forged

20-250mm

20Cr,40Cr,20-42CrMo

Hot  rolled

50-300mm

GCr15

 

Product show of C45 Steel

C45 Steel Round Bar for Constructure Material

C45 Steel Round Bar for Constructure MaterialC45 Steel Round Bar for Constructure Material


Q: What are the main factors affecting the strength of special steel?
The main factors affecting the strength of special steel include the composition of the steel, the heat treatment process, and the presence of any impurities or defects in the material. Additionally, the grain size and structure of the steel, as well as the presence of any alloying elements or treatments, can also impact its strength.
Q: What are the different methods of controlling the grain size in special steel?
To achieve desired mechanical properties and performance, there are multiple approaches available for controlling the grain size in special steel. The following are some of the techniques that can be employed: 1. Alloying: The grain size in steel can be controlled by carefully selecting and managing the composition of alloying elements. Elements like niobium, vanadium, and titanium have proven effective in refining the grain size. 2. Heat treatment: The grain size can be regulated through the process of heat treatment. Techniques such as annealing, normalizing, and quenching can be utilized to manipulate the grain size. For example, slow cooling during annealing encourages the growth of larger grains, while rapid cooling during quenching leads to smaller grain sizes. 3. Deformation processing: Mechanical deformation methods like rolling, forging, or extrusion can aid in refining the grain structure. These processes induce strain and facilitate the formation of smaller and more uniform grains. 4. Grain growth inhibitors: The addition of specific elements like aluminum or zirconium to the steel can act as inhibitors for grain growth. These elements create fine particles that impede the growth of grains during heat treatment, resulting in a smaller grain size. 5. Control of transformation temperature: Manipulating the transformation temperature during heat treatment allows for control over the grain size. Lowering the austenitizing temperature, for example, can yield a finer grain structure in the final product. 6. Rapid solidification: Employing techniques such as spray forming or rapid quenching can lead to an ultrafine-grained microstructure. The rapid cooling prevents grain growth, resulting in a fine and homogeneous grain structure. 7. Severe plastic deformation (SPD) techniques: Techniques like equal channel angular pressing (ECAP) or high-pressure torsion (HPT) impose significant strain on the material, leading to a refined grain structure. These methods are commonly used for producing ultrafine-grained or nanostructured steels. It is essential to consider the desired properties, alloy composition, and intended application of the final product when choosing a method for controlling the grain size in special steel.
Q: What are the unique properties of stainless steel?
Stainless steel has several unique properties that make it highly desirable in various applications. Firstly, it has excellent corrosion resistance, making it resistant to rust and staining, even in harsh environments. Additionally, stainless steel is durable and can withstand high temperatures, making it suitable for use in extreme conditions. It also has a high strength-to-weight ratio, making it strong yet lightweight. Moreover, stainless steel is hygienic and easy to clean, making it ideal for use in food processing and medical equipment. Lastly, stainless steel has an attractive appearance and can be easily fabricated into different shapes, making it a versatile material for various industries.
Q: What are the different methods of testing the quality of special steel?
There are various methods to test the quality of special steel, including mechanical tests such as tensile testing, hardness testing, impact testing, and fatigue testing. Additionally, chemical analysis techniques like spectroscopy and metallography can be used to determine the chemical composition and microstructure of the steel. Non-destructive testing methods like ultrasonic testing and magnetic particle inspection are also commonly employed to detect any defects or anomalies in the steel.
Q: What are the different methods of testing the mechanical properties of special steel?
There are several methods to test the mechanical properties of special steel. Some common methods include tensile testing, impact testing, hardness testing, and fatigue testing. Tensile testing involves applying a controlled force to a steel sample to measure its strength and deformation properties. Impact testing assesses the steel's ability to withstand sudden loading or impact by measuring its resistance to fracture under high-speed impact. Hardness testing determines the steel's resistance to indentation by measuring the material's hardness using various methods like Brinell, Vickers, or Rockwell scales. Fatigue testing evaluates the steel's durability and resistance to repeated loading by subjecting it to cyclic stress and measuring the number of cycles it can endure before failure. These methods collectively provide valuable insights into the mechanical properties and performance of special steel.
Q: What are the different methods of strengthening special steel?
There are several methods to strengthen special steel, including heat treatment, cold working, alloying, and precipitation hardening. Heat treatment involves heating the steel to a specific temperature and then cooling it rapidly or slowly to alter its microstructure and improve its strength. Cold working involves subjecting the steel to mechanical stress, such as rolling or bending, to increase its strength. Alloying involves adding other elements to the steel to enhance its properties, such as manganese, chromium, or nickel. Precipitation hardening involves a two-step process of solution treatment and aging, where the steel is heated and then cooled to form precipitates that strengthen the material.
Q: How does special steel contribute to the efficiency of industrial equipment?
Special steel contributes to the efficiency of industrial equipment by offering superior strength, durability, and resistance to wear and tear. Its unique properties enable the production of lighter and more compact equipment, resulting in reduced energy consumption, increased productivity, and improved overall performance. Additionally, special steel's high corrosion resistance helps to prolong the lifespan of industrial equipment, reducing maintenance costs and enhancing operational efficiency.
Q: How is magnetic alloy steel used in the production of magnetic components?
Magnetic alloy steel is used in the production of magnetic components due to its unique magnetic properties. It is commonly used to make permanent magnets, such as those found in electric motors, generators, and transformers. The alloy's high magnetic permeability and saturation induction make it ideal for creating strong magnetic fields. Additionally, its resistance to demagnetization and ability to retain magnetism at high temperatures make it suitable for various applications in industries like automotive, aerospace, and electronics.
Q: What are the applications of high-speed steel?
High-speed steel (HSS) finds numerous applications due to its exceptional combination of hardness, toughness, and heat resistance. It is extensively used in cutting tools, such as drills, end mills, and lathe tools, enabling efficient machining of various materials, including metals, plastics, and wood. HSS is also employed in forming tools, such as taps and dies, where it can withstand the high pressures and temperatures involved in metalworking processes. Additionally, HSS is utilized in saw blades, milling cutters, and gear cutters, enhancing their durability and performance. Its versatility and reliability make high-speed steel a crucial material in various industries, including manufacturing, automotive, aerospace, and construction.
Q: How does special steel contribute to the defense industry?
Special steel contributes to the defense industry in various ways. Its exceptional strength, durability, and resistance to extreme conditions make it a crucial material for manufacturing components used in military vehicles, aircraft, and naval vessels. Special steel is also used in the production of armor plates and ballistic protection systems, providing enhanced protection to soldiers and military equipment. Additionally, its corrosion resistance properties make it ideal for constructing submarines, missiles, and other critical defense infrastructure. In summary, special steel plays a vital role in ensuring the reliability, performance, and safety of defense equipment, making it an indispensable asset for the defense industry.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords