• ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar System 1
  • ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar System 2
  • ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar System 3
  • ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar System 4
  • ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar System 5
  • ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar System 6
ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
5 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
6mm-32mm
Width:
6mm-32mm
Length:
6-12m
Outer Diameter:
6mm-32mm
Net Weight:
100kg
Packaging:
seaworthy packaging

ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

Detailed Information of ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

NameSteel Round Bar
ShapeRound Bar/Square Bar/Flat Bar/Plate/Wire
StandardGB/ASTM/SAE/AISI/DIN/JIS/EN/BS
Surface Treatment:Black/Peeling/Polished/Machined  
Delivery Condition:Hot Rolled or Forged/Peeled or Black Surface
TestSGS/UT 100% Elements Testing
Certificate:ISO/Mill Certificate
Service:24 hours online service /
more than 20 years trading and manufacture 
Quality Assurance:the third party inspection, such as SGS, BV, TUV…etc. is acceptable
Packaging Details:Seaworthy Packaging or as per customer's packing instruction

Product Overviews of ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

Product NameTypical GradesDiameter(mm)Standard Adopted
Carbon Steel20 (1020/S20C/C22)  
40 (1040/S40C/C40)Ø16-Ø300 
45 (1045/S45C/C45)  
Bearing SteelGCr9 (51100/SUJ1)  
GCr15 (52100/SUJ2/100Gr6)Ø12-Ø250 
GCr9SiMn (A485-Gr.1/SUJ3) GB/SAE/
Cr-Mo Steel20Cr (5120/SCr420H/20Cr4) JIS/DIN
40Cr (5140/SCr440/41Cr4)Ø12-Ø250 
42CrMo(4140/SCM440/42CrMo4)  
Gear Steel20CrNiMo  
20CrMn(5115/SMnC420/20MnCr5)Ø16-Ø600 
20CrNiMo(8620/SNCM220/20CrMiMo2)  

Company Introduction of ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

 

After-sale servicel  CNBM provides the services and support you need for every step of our cooperation. We’re the business partners you can trust; you can relax and get on with doing business. 
l  For any problem, please kindly contact us at any your convenient time, we’ll reply you in our first priority within 24 hours
 
Advantages l  Industry experience over 20 years.
l  Shipment of goods -More than 70 countries worldwide.
l  The most convenient transport and prompt delivery.
l  Competitive price with best service.
l  High technical production line with top quality products.
l  High reputation based on best quality products.
 
 

Packaging & Delivery of ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

 

Packaging DetailSea worthy packing /as per customer's packing instruction
Delivery Detail15 ~ 40 days after receiving the deposit

Products Show

ASTM A615 G60 8mm 10mm 12mm Deformed Steel Bar

FAQ:

 

Are you a trading company or manufacturer?Manufacturer
What’s the MOQ?1000m2 
What’s your delivery time? 15-20 days after downpayment received
Do you Accept OEM service?Yes
what’s your delivery terms?FOB/CFR/CIF
What's the Payment Terms?30% as deposit,70% before shipment by T/T
Western Union acceptable for small amount.
L/C acceptable for large amount.
Scrow ,Paybal,Alipay are also ok 
Why  choose  us?Chose happens because of quality, then price, We can give you both.
Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.
What's your available port of Shipment?Main Port, China
What’s your featured  services?Our service formula: good quality+ good price+ good service=customer's trust
Where are your Market?Covering more than 160 countries in the world

 

Q: What are the challenges in machining special steel?
Machining special steel presents several challenges due to its unique properties. Firstly, special steel is known for its high hardness, which makes it difficult to cut and shape without proper tools and techniques. Additionally, special steel often contains alloying elements that increase its strength and resistance to wear, but also make it more prone to work hardening and heat buildup during machining. This requires careful selection of cutting parameters and cooling methods to prevent tool wear and surface damage. Furthermore, the presence of impurities or non-metallic inclusions in special steel can cause tool chipping or premature failure, necessitating the use of specialized tooling and processes. Overall, the challenges in machining special steel lie in its hardness, work hardening tendencies, heat generation, and the need for precision tools and techniques.
Q: What are the different processes involved in making special steel?
The different processes involved in making special steel include melting and refining the raw materials, such as iron ore and scrap metal, in a furnace to create liquid steel. This liquid steel is then cast into various shapes using techniques like continuous casting or ingot casting. After casting, the steel undergoes heat treatment processes like annealing, quenching, and tempering to enhance its mechanical properties. Additionally, special alloying elements are added during the melting stage to give the steel specific characteristics, such as increased strength or corrosion resistance. Finally, the steel is finished by processes like machining, grinding, and polishing to meet the desired specifications and quality standards.
Q: Can special steel be used for medical applications?
Yes, special steel can be used for medical applications. Specialized types of stainless steel, such as AISI 316L or 316LVM, are commonly used in medical devices and implants due to their excellent corrosion resistance, biocompatibility, and strength. These steels are often used in surgical instruments, orthopedic implants, cardiovascular devices, and many other medical applications.
Q: What are the main factors affecting the hardness of special steel?
The main factors affecting the hardness of special steel include the composition of the steel, the heat treatment process, the grain size of the steel, and the presence of impurities or inclusions.
Q: Can special steel be used in mining applications?
Yes, special steel can be used in mining applications. Special steel, also known as alloy steel, is specifically designed to have enhanced properties such as increased strength, durability, and resistance to wear and corrosion. These properties make it highly suitable for various mining applications where the equipment and machinery are subjected to extreme conditions, including heavy loads, abrasive materials, and exposure to water or chemicals. In mining, special steel is commonly used for manufacturing drill bits, cutting tools, crushing and grinding equipment, conveyor belts, and structural components of mining machinery. For example, drill bits made from special steel alloys have improved hardness and toughness, allowing them to effectively penetrate hard rock formations. Similarly, crushing and grinding equipment that utilizes special steel components can withstand the high stress and impact forces encountered during the extraction and processing of minerals. Moreover, special steel alloys provide better resistance to corrosion and wear, which are common challenges in mining environments. This helps to extend the lifespan of mining equipment, reduce maintenance costs, and enhance operational efficiency. Additionally, special steel can be tailored to meet specific requirements, allowing manufacturers to optimize the performance of mining equipment for different mining applications and conditions. Overall, the use of special steel in mining applications offers numerous benefits in terms of improved performance, durability, and cost-effectiveness. Its unique properties make it an essential material in mining operations, enabling the extraction and processing of minerals in a more efficient and sustainable manner.
Q: What are the different chemical resistance grades of special steel?
The different chemical resistance grades of special steel include austenitic stainless steel, duplex stainless steel, super duplex stainless steel, and high-alloy stainless steel.
Q: Can special steel be used in power generation applications?
Indeed, power generation applications can certainly benefit from the utilization of special steel. When we mention special steel, we are referring to a diverse range of steel types that have been specifically engineered to possess superior attributes like high strength, durability, heat resistance, corrosion resistance, and wear resistance. These exceptional properties make special steel an ideal choice for power generation applications where the materials must endure elevated temperatures, pressures, and mechanical strains. Within the realm of power generation, various components and equipment can make use of special steel. Examples include turbine blades, boiler tubes, heat exchangers, steam pipes, and high-pressure valves. To illustrate, thermal power plants, which rely on fossil fuels for electricity generation, often employ special steel in boiler tubes and heat exchangers to withstand the demanding conditions of steam generation, characterized by high temperatures and pressures. Moreover, in the context of nuclear power plants, special steel finds application in critical components such as reactor vessels, steam generators, and fuel cladding. This is due to its exceptional strength, resistance to radiation damage, and resistance to corrosion. Furthermore, the use of special steel extends to renewable energy power generation applications. For instance, in wind turbines, special steel is employed in the construction of turbine towers, rotor blades, and gearboxes. Its purpose is to withstand the challenges of high wind speeds, vibrations, and fatigue. In summary, special steel occupies a vital role in power generation applications, thanks to its extraordinary properties. By ensuring the reliability, efficiency, and longevity of the equipment and components employed in diverse power generation systems, special steel contributes significantly to the field.
Q: How does special steel perform in terms of fatigue strength?
Special steel typically demonstrates excellent fatigue strength compared to other types of steel. This is due to its enhanced composition and specific manufacturing processes, which result in improved resistance to cyclic loading and repetitive stress. The unique properties of special steel make it highly suitable for applications that require exceptional durability and long-term performance under dynamic conditions.
Q: How does special steel contribute to the manufacturing of power generation equipment?
Special steel plays a crucial role in the manufacturing of power generation equipment due to its unique properties and characteristics. Its exceptional strength, durability, and resistance to corrosion and high temperatures make it an ideal material for various components used in power plants, including turbines, boilers, and generators. Special steel's ability to withstand extreme conditions ensures the reliability and efficiency of power generation equipment, contributing to the overall performance and longevity of power plants.
Q: What are the challenges faced in the manufacturing process of special steel?
The manufacturing process of special steel involves numerous challenges that need to be addressed to ensure the production of high-quality steel. Some of the main challenges faced in this process are: 1. Raw material selection: Special steels require specific alloying elements in precise proportions to achieve desired properties. Choosing the right raw materials is crucial, as it directly impacts the quality of the final product. Ensuring consistent availability and quality of these raw materials can be a challenge. 2. Alloy design and composition: Designing the alloy composition to meet specific requirements can be complex. Achieving the desired balance of strength, hardness, toughness, corrosion resistance, and other properties requires thorough research, testing, and expertise. Developing new alloys with improved properties can be particularly challenging. 3. Melting and refining: Special steels are typically produced through electric arc furnaces or induction melting. Maintaining precise temperature control, proper cooling rates, and refining processes to eliminate impurities like sulfur, phosphorus, and non-metallic inclusions are crucial. These steps require advanced technology and precise control to ensure consistent quality. 4. Heat treatment: Heat treatment is a critical step in the manufacturing process of special steel. Achieving the desired microstructure and properties through processes like quenching, tempering, annealing, or precipitation hardening can be challenging. Proper temperature control, heating and cooling rates, and time durations are essential for obtaining the desired properties. 5. Quality control and testing: Ensuring consistent quality throughout the manufacturing process is paramount. Regular testing and inspection to detect and eliminate defects, inconsistencies, and non-conformities are necessary. This includes dimensional accuracy, mechanical properties testing, non-destructive testing, and chemical analysis. 6. Production efficiency: Special steel manufacturing often involves complex procedures and longer processing times compared to regular steel production. Optimizing the production process to maximize efficiency, minimize waste, and reduce energy consumption is a constant challenge. Implementing lean manufacturing principles and utilizing advanced technologies can help address these challenges. 7. Environmental considerations: Manufacturing special steel can have a significant environmental impact. Addressing issues like energy consumption, waste management, emissions control, and water usage is essential for sustainable production. Compliance with environmental regulations and adopting eco-friendly practices can be challenging yet necessary. Overcoming these challenges requires a combination of technical expertise, research and development, investment in advanced equipment and technologies, and an ongoing commitment to quality control and process improvement.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords