• Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel System 1
  • Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel System 2
Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel

Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product information

Chemical Composition(GB)%

C

Si

Mn

Cr

Cu

S

0.95-1.05

0.15-0.35

0.25-0.45

1.4-1.65

≤0.20

≤0.020

 

Heat Treatment

Item

Temperature ℃

Hardness

Anneal

790-810

170-207HB

Quenching

830-860

62-66HRC

Tempering

150-180

61-66HRC

 

Characterstics

1.Uniform hardness,Good abrasion resistance

2.High contact fatigue resistance

3.Cutting performance in general

 

Applications: Used to make the load of the larger small cross-section conditioning and stress smaller large parts


Product show

.jpg

Workshop show

Alloy Steel 100cr6/52100/GCr15/SUJ2 Bearing Steel

Q:How does special steel perform in terms of hardness?
Special steel is known to exhibit excellent hardness properties due to its unique composition and manufacturing processes. It is specifically designed to have a higher level of hardness compared to regular steel, making it extremely resistant to wear, abrasion, and deformation.
Q:What are the properties of high-temperature alloy steel?
High-temperature alloy steel possesses several important properties, including excellent strength, resistance to corrosion and oxidation, exceptional heat resistance, and the ability to retain its mechanical properties even at elevated temperatures. These alloys are specifically designed to withstand extreme heat and pressure, making them ideal for applications in industries such as aerospace, power generation, and oil and gas.
Q:What are the main applications of special steel in the medical field?
Special steel is extensively used in the medical field for various applications. One of the main applications is in surgical instruments, where special steel's high strength, corrosion resistance, and ability to maintain sharpness make it ideal for creating durable and precise tools. Additionally, special steel is used in the manufacturing of medical implants such as joint replacements, where its biocompatibility and resistance to wear and tear ensure long-term success. Overall, special steel plays a crucial role in providing reliable and safe solutions for medical practitioners and patients in the healthcare industry.
Q:How is the tensile strength of special steel measured?
The tensile strength of special steel is typically measured using a standardized test called a tensile test. In this test, a sample of the special steel is subjected to an increasing amount of tension until it reaches its breaking point. During the test, the applied force is measured, and the corresponding deformation or elongation of the sample is also recorded. The tensile strength is then calculated by dividing the maximum force applied to the sample by its cross-sectional area before the test. This measurement provides an indication of the maximum amount of stress the steel can withstand before it fails or breaks. The tensile strength is an important parameter in determining the suitability of special steel for various applications and ensuring the structural integrity and reliability of the material.
Q:What are the different casting methods used for special steel?
There are several different casting methods used for special steel, including sand casting, investment casting, continuous casting, and centrifugal casting. Each method has its own advantages and is suited for specific applications. Sand casting is a common and cost-effective method that involves pouring molten steel into a sand mold. Investment casting, on the other hand, uses a wax pattern that is coated in a ceramic shell and then melted away to leave a cavity for the steel to be poured into. Continuous casting is a continuous process where molten steel is poured into a water-cooled mold and solidifies into a continuous strand. Finally, centrifugal casting involves spinning a mold while pouring the molten steel, creating a centrifugal force that helps distribute the metal evenly. These different methods allow for the production of special steel components with various sizes, shapes, and properties.
Q:What is the role of cobalt in special steel?
Due to its unique properties and characteristics, cobalt plays a crucial role in special steel. It serves as a significant alloying element in the production of high-performance steel alloys, particularly those used in demanding applications where strength, hardness, and heat resistance are vital. Cobalt's primary function in special steel is to enhance its overall strength and toughness. By forming a solid solution with iron, cobalt creates a fine-grained microstructure that improves the mechanical properties of the steel. This results in increased hardness, wear resistance, and the ability to withstand high temperatures and harsh environments. Moreover, cobalt improves the steel's resistance to corrosion and oxidation, making it suitable for extreme conditions in industries like aerospace, oil and gas, and automotive. Additionally, it enhances the steel's magnetic properties, making it valuable in electrical and electronic devices. Another essential role of cobalt in special steel is its ability to facilitate the formation of stable carbides. The addition of cobalt aids in the precipitation and dispersion of carbides, contributing to the steel's high-temperature strength and excellent retention of hardness at elevated temperatures. Furthermore, cobalt assists in refining the grain structure of the steel, resulting in improved machinability and surface finish. It also allows for better control over the hardenability of the steel, determining its capacity for heat treatment and achieving desired hardness levels. To summarize, cobalt plays a multifaceted and indispensable role in special steel. It enhances the steel's strength, hardness, and toughness, improves its resistance to corrosion and oxidation, and enables it to withstand high temperatures. Cobalt also aids in refining the microstructure of the steel, enhancing machinability and allowing precise control over its hardenability.
Q:How is special steel used in the textile supply chain?
Special steel is used in various applications within the textile supply chain, primarily in the manufacturing of textile machinery and equipment. It is utilized for components such as shafts, bearings, gears, and springs, which are crucial for the smooth functioning and efficiency of textile machinery. Special steel's high strength, durability, and resistance to wear and corrosion make it an ideal material for these demanding applications. Additionally, special steel may also be employed in the production of textile cutting tools and needles, further enhancing the quality and precision of textile products.
Q:How is high-speed tool steel used in the production of machining tools?
High-speed tool steel is used in the production of machining tools due to its exceptional heat resistance, hardness, and wear resistance. It allows for the efficient machining of materials at high speeds, reducing production time and enhancing productivity. This steel is commonly utilized in the manufacturing of cutting tools, such as drills, milling cutters, and taps, to ensure precision and durability in machining operations.
Q:What are the different nuclear grades of special steel?
The different nuclear grades of special steel refer to specific types of steel that are used in the nuclear industry to meet stringent requirements for safety, reliability, and performance. These grades are designed to withstand the harsh conditions of nuclear power plants and other nuclear facilities. There are several nuclear grades of special steel, each with its own unique characteristics and applications. Some of the commonly used grades include: 1. 304/304L stainless steel: This grade is widely used in nuclear applications due to its excellent corrosion resistance and high strength at elevated temperatures. It is often used in the construction of reactor vessels, heat exchangers, and piping systems. 2. 316/316L stainless steel: Similar to 304/304L, this grade offers superior corrosion resistance and high creep strength. It is commonly used in the construction of components exposed to corrosive environments, such as coolant systems, steam generators, and fuel handling equipment. 3. 321 stainless steel: This grade contains titanium, which stabilizes the steel against sensitization during welding. It is often used in nuclear applications where welding is required, such as piping systems and pressure vessels. 4. Duplex stainless steels: These grades, such as 2205 and 2507, offer a combination of high strength and excellent corrosion resistance. They are commonly used in nuclear applications involving highly corrosive environments, such as seawater-cooled systems and containment structures. 5. Low alloy steels: These steels, such as A533B and A508, are used in the construction of reactor pressure vessels due to their high strength and toughness. These grades are specifically designed to withstand the extreme conditions within a nuclear reactor. It is important to note that the selection of the appropriate nuclear grade of special steel depends on the specific application, considering factors such as temperature, pressure, corrosion resistance, and mechanical properties. These grades undergo rigorous testing and quality control measures to ensure their suitability for use in the nuclear industry.
Q:What are the applications of special steel in the manufacturing sector?
Special steel has various applications in the manufacturing sector due to its unique properties. It is commonly used in industries such as automotive, aerospace, construction, and machinery. Special steel's high strength, corrosion resistance, and heat resistance make it ideal for manufacturing components like gears, shafts, bearings, and tools. Additionally, its ability to withstand extreme temperatures and pressures makes it suitable for applications in boilers, turbines, and pressure vessels. Overall, special steel plays a crucial role in enhancing the performance and durability of products in the manufacturing sector.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords