• 30mm*6mm hot sell Equal Angle for construction System 1
  • 30mm*6mm hot sell Equal Angle for construction System 2
  • 30mm*6mm hot sell Equal Angle for construction System 3
  • 30mm*6mm hot sell Equal Angle for construction System 4
30mm*6mm hot sell Equal Angle for construction

30mm*6mm hot sell Equal Angle for construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

Specifications of Angle Steel

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

Angle Steel

Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25

5. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

6.Material details:

Alloy No

Grade

Element (%)

C

Mn

S

P

Si

 

 

 

 

 

 

 

Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3

 

 

 

 

 

 

 

Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

16--40

40--60

60--100

 

 

 

 

 

 

Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)

 

≤16

16--40

40--60

60--100

 

 

 

 

 

 

 

Q235

B

375--500

26

25

24

23

Usage & Applications of Angle Steel

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

Packaging & Delivery of Angle Steel

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

Production flow of Angle Steel

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

Packaging & Delivery of Equal Angle

 

1. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

2. With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.

3. Marks:

Color mark: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: There will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

30mm*6mm hot sell Equal Angle for construction

30mm*6mm hot sell Equal Angle for construction

30mm*6mm hot sell Equal Angle for construction

Q: How do you prevent corrosion between steel angles and other materials?
One effective way to prevent corrosion between steel angles and other materials is by applying a protective coating or paint to the surface of the steel. This coating acts as a barrier, preventing direct contact between the steel and other elements that may cause corrosion, such as moisture or chemicals. Additionally, ensuring proper ventilation and drainage around the steel angles can help prevent moisture buildup, which is a common cause of corrosion. Regular inspection and maintenance, including cleaning and repairing any damaged coatings, can also help prevent corrosion in the long run.
Q: Are steel angles affected by vibration?
Yes, steel angles can be affected by vibration. When subjected to constant or repetitive vibrations, steel angles can experience fatigue or stress cracking over time. This is because vibrations, especially those of high frequency or amplitude, can induce dynamic loads on the steel angles. These loads can lead to cyclic stresses and strains, which can eventually cause damage to the material. In some cases, excessive vibrations can also cause the steel angles to resonate, resulting in amplified oscillations that can lead to structural failure. It is important to note that the susceptibility of steel angles to vibrations depends on various factors such as the quality and strength of the steel, the magnitude and frequency of vibrations, and the design and installation of the structure. To mitigate the effects of vibration on steel angles, engineers and designers often employ various techniques such as damping systems, vibration isolation, or reinforcing the structure to increase its resistance to dynamic loads. Regular inspections and maintenance are also crucial to identify and address any potential issues caused by vibrations to ensure the structural integrity and longevity of steel angles.
Q: Are steel angles load-rated?
Indeed, load-rating is applicable to steel angles. Steel angles serve as structural components widely employed in construction and engineering endeavors. They possess the ability to endure diverse forms of loads, encompassing axial, bending, and shear loads. The load rating of a steel angle pertains to its utmost capacity to sustain a designated load quantity without experiencing any form of failure. Thorough testing and analysis are conducted to ascertain the load ratings for steel angles, taking into account variables such as material properties, geometry, and design criteria. Typically, manufacturers furnish load ratings, which engineers utilize to guarantee the structural soundness and security of a project.
Q: Can steel angles be used in telecommunications towers?
Yes, steel angles can be used in telecommunications towers. Steel angles are commonly used as structural components in the construction of telecommunications towers due to their strength, stability, and ability to withstand heavy loads. They provide the necessary support and stability required for the installation of antennas, equipment, and other telecommunications infrastructure.
Q: Are steel angles suitable for manufacturing support brackets for cables?
Yes, steel angles are suitable for manufacturing support brackets for cables. Steel angles provide strength and durability, making them an ideal choice for supporting and securing cables in various applications. They offer stability and can be easily customized and fabricated to meet specific requirements, ensuring reliable support for cable systems.
Q: Can steel angles be used in the construction of power plants?
Yes, steel angles can be used in the construction of power plants. They provide structural support and stability, making them suitable for various applications such as framing, bracing, and supporting equipment and machinery in power plants.
Q: How do steel angles perform under extreme temperatures?
Under extreme temperatures, steel angles generally have a good performance. Steel possesses a high thermal conductivity, enabling it to rapidly absorb and distribute heat. This characteristic aids in the steel angles' ability to endure extreme temperatures without significant deformation or failure. However, it is important to acknowledge that the actual performance of steel angles in extreme temperatures can vary due to factors like the alloy composition and heat treatment of the steel. In certain instances, steel angles may experience a decrease in strength or an increased susceptibility to corrosion at extremely high temperatures. Therefore, it is advisable to seek advice from a materials engineer or refer to the manufacturer's specifications to ascertain the specific performance of steel angles under the desired extreme temperature conditions.
Q: How do you calculate the deflection of a steel angle?
To calculate the deflection of a steel angle, you would need to consider several factors and apply the appropriate formulas. The deflection of a beam or angle is typically calculated using the Euler-Bernoulli beam theory, which assumes that the beam is slender and experiences small deflections. First, you need to determine the moment of inertia (I) of the steel angle. This can be calculated using the dimensions and properties of the angle section. The moment of inertia represents the resistance of the angle to bending. Next, you should determine the applied load or force (F) acting on the steel angle. This could be a concentrated load, distributed load, or a combination of both. The load will cause a bending moment (M) on the angle. Once you have determined the moment of inertia and the bending moment, you can use the formula for deflection in a simply supported beam: δ = (5 * M * L^4) / (384 * E * I) Where: - δ is the deflection at the midpoint of the steel angle - M is the bending moment acting on the angle - L is the length of the angle - E is the modulus of elasticity of the steel material - I is the moment of inertia of the angle section By plugging in the appropriate values into the formula, you can calculate the deflection. It is important to ensure that the units are consistent and compatible when performing the calculations. However, note that this calculation assumes linear behavior and neglects factors such as shear deformation and lateral torsional buckling. For more accurate results, you may need to consider additional factors or consult engineering resources, such as design codes or software, to obtain a more precise deflection calculation.
Q: Can steel angles be used for architectural detailing or ornamentation?
Yes, steel angles can be used for architectural detailing or ornamentation. They are commonly used to add structural support, create unique design elements, and enhance the aesthetic appeal of buildings. Their versatility, strength, and durability make them suitable for various architectural applications.
Q: How do you inspect and measure the dimensions of a steel angle?
To inspect and measure the dimensions of a steel angle, the following steps can be followed: 1. Tools required for the task are a measuring tape or ruler, a protractor, and a square. 2. Begin by examining the length of the steel angle. Place one end of the measuring tape or ruler on one side of the angle and extend it to the opposite side. Make sure the measuring tape is straight and aligned with the edge of the angle. Read the measurement in inches or millimeters to determine the length. 3. Proceed to measure the width or thickness of the angle. Position the measuring tape or ruler perpendicular to the length of the angle and measure the distance between the two parallel sides. This will provide the width measurement. 4. To measure the height or depth of the angle, position the measuring tape or ruler perpendicular to the width measurement. Again, ensure that the measuring tape is aligned with the edge of the angle and measure the distance between the two sides. This will yield the height measurement. 5. To verify the accuracy of the angle being 90 degrees, employ a square. Place the square against one side of the angle and ensure alignment with the adjacent side. Check if the corner of the angle fits perfectly within the square. If it does, the angle is indeed 90 degrees. If not, adjustments may be necessary. 6. Lastly, if the angle of the steel angle needs measurement, a protractor can be employed. Align one side of the protractor with one side of the steel angle and observe where the other side intersects with the protractor scale. Read the angle measurement to determine the exact angle. By adhering to these steps and utilizing the appropriate tools, one can effectively inspect and measure the dimensions of a steel angle.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords