• Ucraine Turkish Deformed Steel Rebars System 1
  • Ucraine Turkish Deformed Steel Rebars System 2
  • Ucraine Turkish Deformed Steel Rebars System 3
  • Ucraine Turkish Deformed Steel Rebars System 4
  • Ucraine Turkish Deformed Steel Rebars System 5
  • Ucraine Turkish Deformed Steel Rebars System 6
Ucraine Turkish Deformed Steel Rebars

Ucraine Turkish Deformed Steel Rebars

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
130 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Ucraine Turkish Deformed Steel Rebars


Description of Ucraine Turkish Deformed Steel Rebars

1, Diameter: 5.5mm-10mm Ucraine Turkish Deformed Steel Rebars

                       10m- 40mm Ucraine Turkish Deformed Steel Rebars

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Ucraine Turkish Deformed Steel Rebars

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Ucraine Turkish Deformed Steel Rebars

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: Can special steel be used for electrical applications?
Yes, special steel can be used for electrical applications. Special steels such as electrical steel or silicon steel are specifically designed for use in electrical equipment and applications. These steels have low electrical resistivity and high magnetic permeability, making them ideal for use in transformers, motors, generators, and other electrical devices that require efficient electricity conduction and magnetic properties.
Q: What are the main environmental impacts of special steel production?
The main environmental impacts of special steel production include high energy consumption, significant greenhouse gas emissions, and the generation of large amounts of air and water pollution. The production process requires immense amounts of energy, primarily from fossil fuels, leading to the release of carbon dioxide and other greenhouse gases, contributing to climate change. Additionally, the production of special steel involves the use of various chemicals and the generation of hazardous waste, which can contaminate air and water sources, harming ecosystems and human health. Efforts are being made to mitigate these impacts through improved technologies and practices, such as energy efficiency measures and waste management systems, to minimize the environmental footprint of special steel production.
Q: How does special steel perform in cryogenic environments?
Special steel performs exceptionally well in cryogenic environments. Cryogenic temperatures refer to extremely low temperatures below -150°C (-238°F), and special steel is specifically designed to withstand and excel in such conditions. One of the key properties of special steel is its ability to maintain its strength and toughness even at low temperatures. Unlike other materials that become brittle and prone to fractures in cryogenic environments, special steel retains its mechanical properties, ensuring structural integrity and reliability. This characteristic is crucial in applications where safety is paramount, such as in the aerospace and nuclear industries. Moreover, special steel exhibits excellent resistance to corrosion and oxidation, even at cryogenic temperatures. This resistance is essential as cryogenic environments often involve the presence of gases, liquids, or chemicals that can accelerate corrosion. Special steel's resistance to corrosion ensures its longevity and minimizes the risk of material degradation, thereby enhancing the overall performance and lifespan of equipment or structures. In addition to its mechanical and corrosion-resistant properties, special steel also possesses good thermal conductivity. This property allows for efficient heat transfer, which is particularly important in cryogenic environments where temperature control and management are critical. The ability of special steel to efficiently conduct heat ensures that equipment and structures remain at the desired low temperatures without any significant thermal variations. Furthermore, special steel's suitability for cryogenic environments is evident in its wide range of applications. It is commonly used in cryogenic storage tanks for liquefied gases, such as liquid oxygen, nitrogen, and argon. Special steel is also employed in the construction of cryogenic pipelines, valves, and other components, where its exceptional performance ensures the safe transport and containment of cryogenic fluids. In conclusion, special steel performs exceptionally well in cryogenic environments due to its retained strength and toughness, resistance to corrosion, good thermal conductivity, and wide range of applications. Its ability to withstand extreme cold temperatures makes it a reliable and preferred choice for various industries requiring dependable performance in cryogenic conditions.
Q: How does special steel perform in pharmaceutical applications?
Special steel is highly valued in pharmaceutical applications due to its unique properties and characteristics. It offers excellent corrosion resistance, which is crucial in pharmaceutical environments where chemical substances and aggressive cleaning agents are commonly used. This corrosion resistance ensures that the steel remains durable and maintains its integrity over time. Additionally, special steel is known for its high strength and durability, making it suitable for applications that require heavy loads or frequent use. This strength allows the steel to withstand the rigorous demands of pharmaceutical processes, such as mixing, grinding, and sterilization, without compromising its structural integrity. Another key advantage of special steel in pharmaceutical applications is its hygienic properties. Special steel is highly resistant to bacterial growth and is easy to clean, making it ideal for environments where cleanliness and sterility are of utmost importance. The smooth surface of special steel prevents the accumulation of dirt, bacteria, and other contaminants, reducing the risk of contamination and ensuring the safety and quality of pharmaceutical products. Moreover, special steel offers excellent temperature resistance, allowing it to withstand extreme temperatures and thermal cycling typically encountered in pharmaceutical processes. This thermal stability ensures that the steel retains its mechanical properties and dimensional stability, even under fluctuating temperature conditions. Overall, special steel's corrosion resistance, high strength, hygienic properties, and temperature resistance make it a reliable and versatile material for pharmaceutical applications. Its performance in these demanding environments contributes to the production of safe and high-quality pharmaceutical products.
Q: How does special steel perform in terms of electrical conductivity?
Special steel generally has low electrical conductivity compared to other metals such as copper or aluminum. This is due to the high carbon content and other alloying elements present in special steel, which impede the flow of electric current. However, certain types of special steel, such as stainless steel, can exhibit better electrical conductivity when compared to regular carbon steel.
Q: What are the common applications of special steel?
Special steel, also known as alloy steel, finds wide usage across various industries owing to its distinct properties and advantages. Some prevalent applications of special steel are as follows: 1. Automotive industry: In the automotive sector, special steel is extensively employed for the production of engine components such as crankshafts, camshafts, connecting rods, and valves. Its exceptional strength, durability, and resistance to wear render it ideal for enduring the rigorous conditions within internal combustion engines. 2. Aerospace industry: The aerospace industry heavily relies on special steel for manufacturing critical components like landing gear, turbine blades, and structural parts. Its remarkable strength-to-weight ratio, excellent heat resistance, and ability to withstand extreme conditions are indispensable in ensuring the safety and reliability of aircraft. 3. Energy industry: The energy sector, particularly power generation, heavily depends on special steel. It is used in the manufacturing of turbine blades, steam pipes, pressure vessels, and other power plant components. Its capacity to endure high temperatures, pressure, and corrosive environments makes it suitable for these demanding applications. 4. Oil and gas industry: Within the oil and gas sector, special steel is extensively utilized in the production of pipes, valves, fittings, and drilling equipment. Its corrosion resistance and high strength guarantee the secure transportation and extraction of oil and gas in harsh environments. 5. Construction industry: Special steel is commonly employed in the construction sector for various purposes. It is used in the manufacturing of reinforcement bars, structural components, and fasteners. Its high tensile strength, durability, and resistance to corrosion make it an ideal choice for withstanding the loads and environmental conditions encountered in construction projects. 6. Tool and die making: Special steel is widely employed in the production of tools and dies. Its high hardness, wear resistance, and toughness make it suitable for manufacturing cutting tools, molds, dies, and other precision components used across various industries. 7. Medical industry: In the medical sector, special steel is used for the production of surgical instruments, implants, and medical devices. Its biocompatibility, corrosion resistance, and sterilization capabilities make it suitable for these critical applications. In conclusion, special steel finds extensive applications in the automotive, aerospace, energy, oil and gas, construction, tool and die making, and medical industries due to its unique properties and ability to withstand demanding conditions.
Q: How is special steel used in the manufacturing of tools and dies?
Special steel is used in the manufacturing of tools and dies due to its exceptional properties, such as high strength, hardness, and wear resistance. These steels can withstand extreme temperatures and pressures during the forming, cutting, and shaping processes. They also have excellent dimensional stability, ensuring precise and accurate tooling. Special steel's unique composition and heat treatment capabilities allow for the production of durable and long-lasting tools and dies, which are essential for various industries like automotive, aerospace, and manufacturing.
Q: What are the requirements for special steel used in wind turbines?
The reliability, efficiency, and durability of large-scale renewable energy systems, such as wind turbines, rely heavily on the crucial requirements for special steel. Here are some key considerations: 1. Strength and Durability: To withstand the harsh operating conditions, including strong winds, vibrations, and extreme temperature variations, wind turbine steel must possess exceptional strength and durability. Its high fatigue resistance allows it to endure cyclic loading over the turbine's operational life, which can span up to 20-25 years. 2. Corrosion Resistance: Wind turbines often face corrosive saltwater and salt-laden air in coastal or offshore environments. As a result, the special steel used must exhibit superb corrosion resistance to prevent degradation and ensure long-term performance. 3. Weldability: The steel chosen for wind turbines should be suitable for welding processes, enabling efficient fabrication and assembly of turbine components. Excellent weldability streamlines construction and maintenance, reducing downtime and associated costs. 4. Low Temperature Toughness: Wind turbines are frequently situated in cold regions, such as arctic or mountainous areas. Consequently, the special steel employed must possess good low-temperature toughness, ensuring its mechanical properties remain intact even in frigid climates. 5. Magnetic Properties: Wind turbines utilize electrical components like generators and transformers, which operate within electromagnetic fields. The special steel used in these components should possess specific magnetic properties to minimize energy losses and maximize electrical system efficiency. 6. Cost-effectiveness: While meeting all the aforementioned requirements, the special steel employed in wind turbines must also be cost-effective. Striking a balance between performance and cost ensures the economic viability of wind energy projects. Meeting these requirements is vital for the long-term operation and sustainability of wind turbines, enabling them to generate clean and renewable energy efficiently.
Q: How is special steel used in the automotive industry?
Special steel is used in the automotive industry for various applications such as engine components, suspension systems, and safety features. Its unique properties, including high strength, durability, and heat resistance, make it ideal for manufacturing critical parts that require exceptional performance and reliability.
Q: What are the main properties of special steel?
Special steel, also known as alloy steel, possesses several key properties that set it apart from regular steel. Firstly, it exhibits exceptional strength and hardness, making it highly resistant to wear, impact, and deformation. Additionally, special steel offers excellent corrosion resistance, ensuring durability and longevity in various environments. It also demonstrates superior heat resistance, allowing it to withstand high temperatures without losing its structural integrity. Lastly, special steel offers excellent machinability, enabling it to be easily shaped, fabricated, and processed into a wide range of components and structures.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords