• Steel Angle Beams for Structure of Construction System 1
  • Steel Angle Beams for Structure of Construction System 2
  • Steel Angle Beams for Structure of Construction System 3
Steel Angle Beams for Structure of Construction

Steel Angle Beams for Structure of Construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 

OKorder is offering Steel Angle Beams for Structure of Construction  at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Angle Beams for Structure of Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Angle Beams for Structure of Construction are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

EQUAL ANGLES SIZES

a(mm)

a1(mm)

thickness(mm)

length

25

25

2.5---3.0

6M/12M

30

30

2.5---4.0

6M/12M

38

38

2.5

6M/12M

38

38

3.0---5.0

6M/12M

40

40

3.0---6.0

6M/12M

50

50

3

6M/12M

50

50

3.7---6.0

6M/9M/12M

60

60

5.0---6.0

6M/9M/12M

63

63

6.0---8.0

6M/9M/12M

65

65

5.0---8.0

6M/9M/12M

70

70

6.0---7.0

6M/9M/12M

75

75

5.0---10.0

6M/9M/12M

80

80

6.0---10.0

6M/9M/12M

90

90

6.0---10.0

6M/9M/12M

100

100

6.0---12.0

6M/9M/12M

120

120

8.0-12.0

6M/9M/12M

125

125

8.0---12.0

6M/9M/12M

130

130

9.0-12.0

6M/9M/12M

140

140

10.0-16.0

6M/9M/12M

150

150

10---15

6M/9M/12M

160

160

10---16

6M/9M/12M

180

180

12---18

6M/9M/12M

200

200

14---20

6M/9M/12M

Trademark

Rank

Chemical composition (quality score) %  

C

Si

Mn

S

P

Q235

A

0.14-0.22

0.30

0.30-0.65

0.050

0.045

Q235

B

0.12-0.20

0.30

0.30-0.70

0.045

0.045

Trademark

Rank

Pulling Test

Bend PointΔs/Mpa 

Tensile Strength

Elongation Ratioδ5%

Thickness (Diameter) /MM

Thickness (Diameter) /MM

≤16

16-40

≤16

16-40

Q235

A

235

225

375-500

26

25

Q235

B

235

225

375-500

26

25

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How soon can we receive the product after purchase?

A2: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

Q3: How many tons of steel products could be loaded in containers?

A3: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

 

Images:

Steel Angle Beams for Structure of Construction

Q: Can steel angles be used in sign support structures?
Yes, steel angles can be used in sign support structures. Steel angles are commonly used in construction as they provide excellent strength and structural support. They can be easily welded or bolted together to form sturdy sign support structures that can withstand various weather conditions and loads.
Q: What are the standard dimensions for equal leg steel angles?
The standard dimensions for equal leg steel angles can vary depending on the specific industry standards and requirements, but common dimensions include equal leg lengths ranging from 1/2 inch to 8 inches, with thicknesses typically ranging from 1/8 inch to 1 inch.
Q: Can steel angles be used for machine guards?
Yes, steel angles can be used for machine guards. Steel angles are commonly used in the construction industry for their strength and durability. They can be easily fabricated and installed to create a protective barrier around machinery, ensuring the safety of workers and preventing accidents. The versatility of steel angles allows them to be customized to fit various machine sizes and shapes. Additionally, steel angles offer good impact resistance and can withstand heavy loads, making them suitable for use in machine guarding applications.
Q: Can steel angles be used in modular construction?
Yes, steel angles can indeed be used in modular construction. They are commonly used as structural elements to provide stability and support in modular buildings.
Q: What are the different types of connections used for steel angles in steel frames?
There are several types of connections used for steel angles in steel frames, including welded connections, bolted connections, and riveted connections. Welded connections involve fusing the angles together using heat, creating a strong and permanent bond. Bolted connections involve using bolts and nuts to secure the angles together, allowing for easy disassembly if necessary. Riveted connections involve using rivets, which are metal pins, to hold the angles together by forming a permanent, tight fit. The choice of connection type depends on the specific requirements of the steel frame and the desired level of strength and durability.
Q: What is the minimum radius for a curved steel angle beam?
Various factors, including material thickness, type of steel, and design requirements, contribute to determining the minimum radius for a curved steel angle beam. However, there are generally accepted guidelines that should be followed when considering this minimum radius. Typically, the minimum radius for a curved steel angle beam is determined by the bending capacity of the steel material being used. This bending capacity is influenced by the yield strength, tensile strength, and section properties of the steel angle beam. To calculate the minimum radius, the bending stress induced in the steel angle beam must be taken into account. This bending stress depends on the applied load, curvature radius, and section properties of the beam. By ensuring that the bending stress does not exceed the allowable stress limits of the steel material, a safe minimum radius can be established. Specific guidelines and requirements regarding minimum radii for curved steel angle beams can be found in relevant design codes and standards such as the American Institute of Steel Construction (AISC) Manual or the Eurocode. These codes provide detailed information on the design and fabrication of curved steel members, including any limitations on minimum radii. For accurate calculations and analyses based on the specific project requirements, it is advisable to consult a qualified structural engineer or a steel fabrication specialist. Their expertise can ensure that the necessary calculations are performed correctly.
Q: What are the limitations of using steel angles in corrosive or saltwater environments?
The main limitations of using steel angles in corrosive or saltwater environments are their susceptibility to corrosion and potential for accelerated deterioration. Steel angles are prone to rusting and corrosion when exposed to moisture and saltwater, which can weaken the structural integrity of the material over time. To mitigate these limitations, protective coatings or alternative materials such as stainless steel or galvanized steel can be used.
Q: What are the different standards and specifications for steel angles?
There are several different standards and specifications for steel angles, which determine the physical and mechanical properties of the angles. Some of the most commonly used standards include: 1. ASTM A36/A36M: This is a standard specification for carbon structural steel, including angles. It specifies the chemical composition, mechanical properties, and other requirements for carbon steel angles. 2. ASTM A529/A529M: This specification covers high-strength carbon-manganese steel shapes, including angles. It outlines the composition, mechanical properties, and other specifications for these angles. 3. ASTM A572/A572M: This standard specification covers high-strength low-alloy columbium-vanadium structural steel shapes, including angles. It provides details on the chemical composition, mechanical properties, and other requirements for these angles. 4. ASTM A588/A588M: This specification covers high-strength low-alloy structural steel shapes, including angles, with improved atmospheric corrosion resistance. It specifies the chemical composition, mechanical properties, and other characteristics for these angles. 5. ASTM A709/A709M: This standard specification covers carbon and high-strength low-alloy structural steel shapes, including angles, for use in bridges. It provides information on the chemical composition, mechanical properties, and other specifications for these angles. 6. EN 10056: This European standard specifies the tolerances on shape, dimensions, and mass of hot-rolled structural steel equal and unequal angles. It also provides information on the mechanical properties and other requirements for these angles. 7. JIS G3192: This Japanese standard specifies the dimensions, mass, and permissible variations of hot-rolled steel sections, including angles. It outlines the mechanical properties and other specifications for these angles. These are just a few examples of the different standards and specifications for steel angles. It is important to consult the specific standard relevant to your project or application to ensure that the steel angles meet the required criteria.
Q: How do steel angles perform under fatigue or repeated loading conditions?
Due to their ability to endure repeated loading conditions, including fatigue, steel angles are widely used in structural applications. The fatigue performance of steel angles is influenced by various factors, such as material properties, design, and loading conditions. Typically, high-strength steel is used to manufacture steel angles, which possess outstanding fatigue resistance. These steels have a high fatigue strength, allowing them to withstand numerous cycles of loading before failure occurs. The fatigue strength of steel angles can be enhanced further by implementing techniques like heat treatment or surface hardening. The geometry of the steel angle is a critical aspect in its fatigue performance. Sharp corners or notches can act as points of stress concentration, leading to accelerated initiation and propagation of fatigue cracks. Hence, it is crucial to consider factors like fillet radii and smooth transitions when designing steel angles for applications prone to fatigue. The fatigue behavior of steel angles is also influenced by the loading conditions. The magnitude and frequency of applied loads, along with additional factors like corrosion or temperature variations, can impact the fatigue life of the angles. Comprehensive analysis and testing are necessary to determine the expected fatigue life and ensure the dependable performance of steel angles under repeated loading conditions. Overall, steel angles are renowned for their exceptional performance under fatigue or repeated loading conditions. By considering material properties, design factors, and loading conditions, engineers can optimize the fatigue resistance of steel angles for specific applications, guaranteeing their long-term durability and reliability.
Q: What is the typical lead time for steel angle orders?
The typical lead time for steel angle orders can vary depending on multiple factors such as the supplier, quantity, customization requirements, and current market conditions. However, in general, lead times for steel angle orders tend to range between 2 to 4 weeks. This allows for the processing of the order, manufacturing or sourcing the steel angles, and transportation to the desired location. It is important to note that lead times can be influenced by factors such as availability of raw materials, production capacity, and supplier's workload. Therefore, it is advisable to contact the specific supplier or manufacturer for accurate and up-to-date lead time information.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords