High Quality Steel Angle Beams for Construction Structure
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
High Quality Steel Angle Beams for Structure of Construction
Product Description:
OKorder is offering High Quality Steel Angle Beams for Structure of Construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
High Quality Steel Angle Beams for Structure of Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's High Quality Steel Angle Beams for Structure of Construction are durable, strong, and wide variety of sizes.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: Q195 – 235
Certificates: ISO, SGS, BV, CIQ
Length: 6m – 12m, as per customer request
Packaging: Export packing, nude packing, bundled
EQUAL ANGLES SIZES | |||
a(mm) | a1(mm) | thickness(mm) | length |
25 | 25 | 2.5---3.0 | 6M/12M |
30 | 30 | 2.5---4.0 | 6M/12M |
38 | 38 | 2.5 | 6M/12M |
38 | 38 | 3.0---5.0 | 6M/12M |
40 | 40 | 3.0---6.0 | 6M/12M |
50 | 50 | 3 | 6M/12M |
50 | 50 | 3.7---6.0 | 6M/9M/12M |
60 | 60 | 5.0---6.0 | 6M/9M/12M |
63 | 63 | 6.0---8.0 | 6M/9M/12M |
65 | 65 | 5.0---8.0 | 6M/9M/12M |
70 | 70 | 6.0---7.0 | 6M/9M/12M |
75 | 75 | 5.0---10.0 | 6M/9M/12M |
80 | 80 | 6.0---10.0 | 6M/9M/12M |
90 | 90 | 6.0---10.0 | 6M/9M/12M |
100 | 100 | 6.0---12.0 | 6M/9M/12M |
120 | 120 | 8.0-12.0 | 6M/9M/12M |
125 | 125 | 8.0---12.0 | 6M/9M/12M |
130 | 130 | 9.0-12.0 | 6M/9M/12M |
140 | 140 | 10.0-16.0 | 6M/9M/12M |
150 | 150 | 10---15 | 6M/9M/12M |
160 | 160 | 10---16 | 6M/9M/12M |
180 | 180 | 12---18 | 6M/9M/12M |
200 | 200 | 14---20 | 6M/9M/12M |
- Q: How do you measure the dimensions of a steel angle?
- To measure the dimensions of a steel angle, you can use a measuring tape or ruler to determine the length of the two sides that form the angle. Additionally, you can measure the thickness of the steel angle using a caliper or a micrometer.
- Q: Can steel angles be used in HVAC systems?
- Yes, steel angles can be used in HVAC systems. They are often used as supports, brackets, or framing components in the installation of air conditioning units, ductwork, and other HVAC equipment. Steel angles provide strength, stability, and durability, making them suitable for various applications within HVAC systems.
- Q: What are the different methods of connecting steel angles?
- Different methods can be used to connect steel angles, depending on the application and desired strength and durability. Welding is a widely used technique that involves melting the metals at the joint and allowing them to cool and solidify, creating a strong and permanent bond. Various welding techniques, such as arc welding, MIG welding, or TIG welding, can be employed to achieve a high level of strength and rigidity in the connection. Bolting is another common method that involves using bolts, nuts, and washers to secure the angles together. This method allows for easy disassembly and reassembly if necessary, and the level of tightness and strength in the connection can be adjusted by tightening the bolts. However, bolting may not provide the same level of strength as welding in certain applications. Mechanical connectors offer an alternative to welding and bolting. These pre-engineered devices, such as plates, brackets, or clips, are specifically designed for connecting steel members. They can be fastened to the angles using bolts or screws, providing ease of installation, flexibility, and the ability to accommodate movement and adjustments. Adhesive bonding is another method that involves using industrial-grade adhesives to join steel angles. This technique can provide a strong and durable connection, especially when combined with mechanical fasteners. Adhesive bonding is often used in situations where welding or bolting may not be suitable or practical. When selecting the appropriate method of connecting steel angles, it is important to consider factors such as load-bearing capacity, environmental conditions, and aesthetic requirements. Consulting with a structural engineer or a professional experienced in steel fabrication can help determine the most suitable connection method for a specific project.
- Q: What are the common connections or fasteners used with steel angles?
- Steel angles can be connected or fastened using a variety of methods and materials. Bolts, screws, welds, and rivets are commonly used in this regard. When attaching steel angles to other structural elements or connecting multiple angles together, bolts and screws are often the go-to option. Welding, on the other hand, involves heating and fusing the angles together, resulting in a strong and durable bond. Rivets, which involve inserting a metal pin through holes in the angles and securing them with hammering or mechanical pressing, provide an alternative method of connection. The choice of connection or fastener depends on factors such as the specific application, load requirements, and desired aesthetics.
- Q: What are the typical lead times for steel angle orders?
- The typical lead times for steel angle orders can vary depending on the supplier and factors such as quantity, customization, and current demand. However, lead times generally range from a few days to a few weeks. It is recommended to check with the specific supplier for accurate information on lead times.
- Q: How do you determine the required angle thickness for a specific application?
- To determine the necessary thickness of an angle for a particular application, multiple factors must be taken into account. First and foremost, one must understand the load or force that will be placed on the angle. This can be achieved by analyzing the specific application and estimating the weight or pressure that will be exerted on the angle. Next, the material of the angle must be considered. Different materials possess varying strength properties, and their ability to withstand the applied load will differ accordingly. It is crucial to select a material that possesses the necessary strength and durability for the application at hand. Alongside this, the length of the angle and the distance between its supports should also be considered. Longer angles or greater distances between supports may necessitate thicker angles to prevent buckling or bending when subjected to the applied load. Furthermore, environmental factors like temperature, humidity, or corrosive substances may impact the required thickness of the angle. For example, in corrosive environments, a thicker angle may be essential to ensure its longevity and structural integrity. Finally, it is imperative to consult applicable building codes, regulations, or industry standards to ensure compliance and safety. These guidelines often provide specific recommendations or requirements for angle thickness based on the intended application. In conclusion, determining the required angle thickness for a specific application entails analyzing the load, material strength, length, support distance, environmental factors, and relevant regulations. Proper consideration of these factors will help guarantee that the angle can withstand the applied load and provide a safe and durable solution for the given application.
- Q: How do steel angles perform in terms of electromagnetic shielding?
- Steel angles have a reputation for being highly effective in terms of electromagnetic shielding. This is mainly because of their exceptional electrical conductivity and magnetic permeability. These particular qualities enable steel angles to efficiently redirect or absorb electromagnetic waves, resulting in a reduced impact on adjacent electronic devices or sensitive equipment. The shape and geometry of steel angles also play a role in their shielding capabilities, as they can be strategically positioned to create barriers or enclosures that obstruct or redirect electromagnetic fields. Additionally, the thickness or gauge of the steel angle can further amplify its shielding performance. In general, steel angles find widespread use in a variety of applications where minimizing or controlling electromagnetic interference is crucial, such as in the construction, telecommunications, electronics, and automotive industries.
- Q: How do steel angles contribute to the overall energy efficiency of a building?
- Steel angles contribute to the overall energy efficiency of a building in several ways. Firstly, they can be used as structural components to provide strength and support, enabling the building to withstand external forces and reduce the risk of damage or collapse. This durability reduces the need for repairs or replacements, saving energy and resources in the long run. Additionally, steel angles can be incorporated into the construction of walls, floors, and roofs to enhance insulation and thermal performance. By minimizing heat transfer and air leakage, they help maintain a more comfortable indoor environment and reduce the reliance on heating or cooling systems, thereby improving energy efficiency.
- Q: Can steel angles be used in the construction of solar panel support structures?
- Yes, steel angles can be used in the construction of solar panel support structures. Steel angles provide structural support and stability, making them suitable for holding solar panels in place and withstanding various weather conditions.
- Q: Are there any environmental benefits of using steel angles?
- Using steel angles has numerous environmental advantages. To begin with, steel is one of the most recycled materials globally. When steel angles are no longer needed, they can be easily recycled into new steel products, thereby decreasing the demand for new steel production. This recycling process consumes less energy and resources compared to manufacturing steel from raw materials, resulting in significant energy savings and reduced carbon emissions. Furthermore, steel is a durable material with a long lifespan. This means that steel angles require less frequent replacement than other materials, leading to a reduction in waste generation. Steel's durability also means that it requires less maintenance and repairs over time, further minimizing its environmental impact. Moreover, steel is resistant to fire, pests, and rot, which reduces the necessity for chemical treatments and preservatives that can harm the environment. Additionally, steel angles have a high strength-to-weight ratio, meaning that less material is needed to achieve the same structural integrity compared to other materials. This not only reduces the amount of raw materials needed but also decreases transportation costs and fuel consumption during construction. Lastly, steel is highly versatile and can be used in various applications, such as construction and manufacturing. This versatility enables the creation of innovative and sustainable designs that optimize energy efficiency and decrease environmental impact. For instance, steel angles can be utilized in the construction of energy-efficient buildings that incorporate renewable energy systems, ultimately reducing overall energy consumption and greenhouse gas emissions. In conclusion, utilizing steel angles provides numerous environmental benefits, including decreased energy consumption, lower carbon emissions, reduced waste generation, and increased durability. These factors make steel angles a sustainable and environmentally-friendly choice for a range of applications.
Send your message to us
High Quality Steel Angle Beams for Construction Structure
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords