Steel Rebars prices per ton for building construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 18000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Common rebar is made of unfinished steel, making it susceptible to rusting. As rust takes up greater volume
than the iron or steel from which it was formed, it causes severe internal pressure on the surrounding concrete,
leading to cracking, spalling, and ultimately, structural failure. This is a particular problem where the concrete is
exposed to salt water, as in bridges built in areas where salt is applied to roadways in winter, or in marine applications.
Epoxy-coated rebar or stainless steel rebar may be employed in these situations at greater initial expense, but significantly
lower expense over the service life of the project. Fiber-reinforced polymer rebar is now also being used in high-corrosion environments
Our Advantage: High quality steel products from 1 class mills in China
Reasonable price
Professionalism of the products
On-time delivery
Complete documents and certificates
Sincere service to meet our clients' requirements
Product Description :
Chemical composition (%): | Steel | C | Si | Mn | P | S | Ceq | ||||
HRB335 |
0.25 |
0.80 |
1.60 |
0.045 |
0.045 | 0.52 | |||||
HRB400 | 0.54 | ||||||||||
HRB500 | 0.55 | ||||||||||
Mechanical properties | Steel | Rel/ MPa | Rm/ MPa | A/ % | Agt/ % | ||||||
≥ | |||||||||||
HRB335 | 335 | 455 | 17 |
7.5 | |||||||
HRB400 | 400 | 540 | 16 | ||||||||
HRB500 | 500 | 630 | 15 | ||||||||
Package: | Standard export packing or as customer's request | ||||||||||
Application: | Construction, building, bridge, road. ect | ||||||||||
Payment terms | 1).100% irrevocable L/C at sight. | ||||||||||
Delivery time | 15-30 days after receipt of L/C or deposit by T/T | ||||||||||
Packing:
In bundles, each bundle weight 3.5 tons. Load by container or by bulk verssel.
Our service
(1) We cooperate with famous factories with advanced equipment and well trained workers.
(2) We can provide factory price with trading company service.
(3) We continuously work on the improvement of our processes, guaranteeing consistently high standards
of quality to keep none compensation.
(4) We guarantee 24 hours response and 48 hours solution providing service.
(5) We accept small order quantity before formal cooperation.
(6) We deliver the agreed quality at the agreed time, reacting to changes in customer wishes in a flexible way.
(7) Due to our volume and selling power, we have excellent freight rates with shipping lines.
(8) We strive to always be fair and honest in our dealings with customers.
(9) We strive to work together with customers to achieve much more than we can achieve alone.
(10) Through our passion and commitment we aim to be a market leader in all our key markets. To maintain
our position as market leader we must continue to add value in all that we do.
FAQ:
1.Q: What's your MOQ(minimum order quantity)?
A: One full container, mixed acceptable .
2. Q: What's your packing methods?
A: Packed in bundle or bulk ..
3. Q: How can I buy CNBM products in my country?
A:Please send us an inquiry or email ,we will reply to you if there is distributor in your country
4. Q: Can we visit your factory?
A: Warmly welcome. Once we have your schedule, we will arrange the professional sales team to follow up your case.
5. Q: How long does it take to get the product if i place an order?
A:With the process of your requirements,we will pack and deliver in 3-7 days. If it is by sea shipment,it will take 15-45 days depending on different locations
- Q: Are steel rebars suitable for use in structures with high resistance to chemicals?
- Steel rebars are generally not suitable for use in structures with high resistance to chemicals. While steel is a strong and durable material, it is susceptible to corrosion when exposed to certain chemicals. Chemicals such as acids, alkalis, and chlorides can cause steel rebars to corrode, which can compromise the structural integrity of the building or structure. To ensure high resistance to chemicals, alternative materials such as stainless steel rebars or fiber-reinforced polymer (FRP) rebars are often used. Stainless steel rebars are more resistant to corrosion than regular steel rebars due to their higher chromium content. FRP rebars, on the other hand, are non-metallic and do not corrode, making them a suitable choice for structures exposed to harsh chemical environments. Ultimately, the choice of rebars in structures with high resistance to chemicals depends on the specific chemicals involved and the level of exposure. It is important to consult with engineers and experts who can assess the chemical environment and recommend the most suitable rebars to ensure the long-term durability and safety of the structure.
- Q: What are the different types of steel rebars used in tunnel constructions?
- Tunnel constructions rely on the use of different steel rebars to strengthen and fortify the tunnels. These rebars play a vital role in providing stability and reinforcement to the tunnel structures. Below are several types of steel rebars commonly utilized in tunnel constructions: 1. Mild Steel Rebars: Also known as black or carbon steel rebars, mild steel rebars are the most frequently employed in tunnel constructions. They are both cost-effective and possess sufficient strength to meet the structural demands of tunnels. 2. High-Strength Steel Rebars: High-strength steel rebars, sometimes referred to as tension steel, offer enhanced tensile strength, making them ideal for tunnels that require high load-bearing capabilities. These rebars are typically fabricated from alloys such as ASTM A615 Grade 80 or ASTM A706 Grade 80. 3. Stainless Steel Rebars: Stainless steel rebars are resistant to corrosion and provide excellent durability in harsh tunnel environments. They are commonly used in tunnel constructions where corrosion protection is vital, such as in marine or coastal areas. 4. Epoxy-Coated Rebars: Epoxy-coated rebars are regular mild steel rebars that have been coated with epoxy to safeguard against corrosion. They are often employed in tunnel constructions that are exposed to moisture, chemicals, or other corrosive elements. 5. Galvanized Rebars: Galvanized rebars are coated with a layer of zinc to shield them from corrosion. They are commonly used in tunnel constructions that are exposed to moisture or in regions with high humidity levels. 6. Fiberglass Rebars: Fiberglass rebars, also known as GFRP (Glass Fiber Reinforced Polymer) rebars, are lightweight and resistant to corrosion. They are used in tunnel constructions where reducing weight is crucial or in areas with high electromagnetic interference. 7. Carbon Fiber Rebars: Carbon fiber rebars, also called CFRP (Carbon Fiber Reinforced Polymer) rebars, possess high tensile strength and are resistant to corrosion. They are often utilized in tunnel constructions that require high tensile strength and resistance to chemical or environmental degradation. Choosing the appropriate type of steel rebar for tunnel constructions depends on various factors such as load-bearing requirements, exposure to corrosion, environmental conditions, and project budget. It is advisable to consult with structural engineers or construction experts to ensure the optimal selection of steel rebars for tunnel projects.
- Q: What are the guidelines for splicing steel rebars in a structure?
- The guidelines for splicing steel rebars in a structure are as follows: 1. Ensure proper design: The first step is to have a detailed design of the structure, which includes the required length and location of rebar splices. The design should follow the applicable building codes and standards. 2. Use approved methods: It is crucial to use approved methods for splicing steel rebars. The most common methods include lap splicing, mechanical splicing, and welded splicing. The selected method should be in compliance with the design requirements and accepted industry practices. 3. Determine splice length: The splice length is determined based on the structural requirements and the type of rebar being used. It is recommended to consult the design engineer or refer to the code requirements to determine the appropriate splice length. 4. Prepare the rebars: Before splicing, rebars should be cleaned of rust, scale, oil, or any other contaminants that may affect the bond strength. The ends of the rebars should be clean and free from deformations or irregularities. 5. Splice location: The location of the splice is critical and should be as per the design specifications. Splices should not be placed in areas subjected to high stress or where they may affect the structural integrity of the member. 6. Reinforcement continuity: Splicing should maintain the continuity of reinforcement to ensure the structural integrity. Adequate overlap or connection strength should be achieved to transfer loads between the spliced rebars. 7. Proper installation: During splicing, it is important to follow proper installation procedures. This may include using appropriate splicing materials, ensuring correct alignment and fit, and applying the recommended torque or tension for mechanical splices. 8. Quality control and inspection: Regular inspections should be conducted during and after the splicing process to ensure compliance with the design and quality standards. This may involve visual inspection, non-destructive testing, or load testing as required. 9. Documentation and record-keeping: It is essential to maintain proper documentation of the splicing process, including details of the method used, splice length, location, and any deviations from the design. This documentation helps in ensuring traceability and accountability. 10. Compliance with codes and standards: Lastly, all splicing activities should comply with the relevant building codes, industry standards, and specifications. It is advisable to refer to the specific code requirements applicable to the region and seek professional advice if needed.
- Q: Can steel rebars be used in structures with high chloride exposure?
- No, steel rebars should not be used in structures with high chloride exposure as they are susceptible to corrosion in such environments.
- Q: What is the role of steel rebars in reinforced concrete beams?
- The role of steel rebars in reinforced concrete beams is to provide tensile strength and reinforcement to the concrete. Concrete is strong in compression but weak in tension, so the steel rebars are embedded within the concrete to carry the tensile forces and prevent cracking or failure of the beam. The rebars distribute the applied loads throughout the beam, increasing its overall strength and durability.
- Q: What are the different types of steel rebars used in dam construction?
- There are typically three types of steel rebars used in dam construction: carbon steel rebars, epoxy-coated rebars, and stainless steel rebars. Carbon steel rebars are the most commonly used type due to their high strength and cost-effectiveness. Epoxy-coated rebars are used in situations where corrosion resistance is crucial, as the coating helps protect the steel from exposure to moisture and chemicals. Stainless steel rebars are used in highly corrosive environments or where additional strength and durability are required.
- Q: How do steel rebars prevent cracking in concrete structures?
- Steel rebars prevent cracking in concrete structures by providing tensile strength to the concrete. As concrete is strong in compression but weak in tension, the rebars act as a reinforcement by absorbing the tensile forces and distributing them throughout the structure. This helps to resist cracking and increase the overall durability and strength of the concrete structure.
- Q: Can steel rebars be used in industrial flooring?
- Industrial flooring can indeed incorporate steel rebars, as they possess remarkable tensile strength and durability. The incorporation of steel rebars in concrete construction, particularly in industrial flooring, is a widespread practice. These rebars are strategically positioned within the concrete to reinforce it and provide additional strength, enabling it to withstand heavy loads and prevent cracking. By utilizing steel rebars in industrial flooring, the capacity to bear weight is significantly augmented, and the floor's longevity and structural integrity are assured. Furthermore, steel rebars can be effortlessly welded or linked together to form a grid or mesh, further enhancing the floor's strength and stability. Hence, steel rebars are a suitable choice for industrial flooring applications.
- Q: How do steel rebars prevent cracks in concrete structures?
- Steel rebars prevent cracks in concrete structures by providing reinforcement and increasing the tensile strength of the concrete. When concrete is exposed to tensile forces, such as those caused by external loads or temperature changes, it tends to crack. However, steel rebars, which are embedded within the concrete, act as a reinforcement and absorb these tensile forces. The rebars distribute the load more evenly throughout the structure, preventing localized stress and minimizing the formation of cracks.
- Q: What are the common quality tests performed on steel rebars?
- Steel rebars undergo several common quality tests to guarantee their strength and durability, ensuring they meet the necessary standards and can withstand the intended load and environmental conditions. The tensile test is one of the most prevalent quality tests for steel rebars. This test determines the maximum amount of tensile stress the rebar can bear before breaking, providing insights into its tensile strength and ductility. Another significant quality test is the bend test, which involves bending a rebar at a specific angle without it breaking. This test evaluates the rebar's flexibility, resistance to cracking or fracturing, and is particularly crucial for construction projects requiring bending or shaping. Chemical composition analysis is conducted to determine the percentage of various elements present in the steel rebars, such as carbon, manganese, phosphorus, sulfur, among others. This analysis ensures that the rebars meet specific requirements and do not contain any impurities that could jeopardize their strength or corrosion resistance. Corrosion resistance is also a vital property for steel rebars, especially in high-moisture or chemically exposed environments. A corrosion test is performed by subjecting the rebars to corrosive environments like salt spray or acidic solutions, assessing their resistance to corrosion. This test helps determine the rebars' suitability for specific applications and prevents premature degradation. Lastly, dimensional tests are conducted to verify that the rebars meet required dimensions and tolerances. These tests involve measuring the rebars' length, diameter, and weight. Deviations from specified dimensions can impact the rebars' structural integrity and compatibility with other construction materials. In summary, quality tests for steel rebars include tensile testing, bend testing, chemical composition analysis, corrosion resistance testing, and dimensional testing. These tests are crucial in ensuring the strength, durability, and suitability of steel rebars for various construction applications.
Send your message to us
Steel Rebars prices per ton for building construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 18000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords