• Deformed Steel Rebars for Construction Concrete System 1
  • Deformed Steel Rebars for Construction Concrete System 2
  • Deformed Steel Rebars for Construction Concrete System 3
Deformed Steel Rebars for Construction Concrete

Deformed Steel Rebars for Construction Concrete

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Deformed Steel Rebars for Construction Concrete at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Deformed Steel Rebars for Construction Concrete are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Deformed Steel Rebars for Construction Concrete are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335,HRB400,HRB500

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Deformed Steel Bar

Diameter

(MM)

Cross

Sectional

Area

(MM2)

Theorectical

Weight

(KG/M)

6

28.27

0.222

8

50.27

0.395

10

78.54

0.617

12

113.1

0.888

14

153.9

1.21

16

201.1

1.58

18

254.5

2

20

314.2

2.47

22

380.1

2.98

25

490.9

3.85

28

615.8

4.83

32

804.2

6.31

36

1018

7.99

40

1257

9.87

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How many tons of steel products could be loaded in containers?

A2: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

Deformed Steel Rebars for Construction Concrete

Deformed Steel Rebars for Construction Concrete

 

Q: How are steel rebars protected during the concrete pouring process?
Steel rebars are typically protected during the concrete pouring process through the use of a protective coating, such as epoxy or zinc, which helps prevent corrosion and maintain their structural integrity. Additionally, proper concrete mix design and placement techniques are employed to ensure that rebars are adequately surrounded and encased in concrete, providing further protection against environmental factors.
Q: What is the effect of chloride ions on steel rebars?
The presence of chloride ions in the environment can have a detrimental effect on steel rebars. Chloride ions can penetrate the protective oxide layer on the surface of the steel and react with the iron atoms, leading to the formation of iron chloride compounds. These compounds are highly corrosive and can cause the rebars to rust and eventually weaken. This corrosion process, known as chloride-induced corrosion, can significantly reduce the structural integrity and lifespan of steel rebars, posing a risk to the overall stability of reinforced concrete structures. Therefore, it is crucial to protect steel rebars from chloride exposure through proper design, construction, and maintenance practices to ensure their long-term durability and safety.
Q: What is the impact of steel rebars on the carbon footprint of a building?
Steel rebars have a significant impact on the carbon footprint of a building due to their production process and overall lifecycle. The manufacturing of steel rebars involves the extraction of raw materials, such as iron ore, and the energy-intensive process of smelting and refining them into steel. This phase alone contributes to greenhouse gas emissions and consumes substantial amounts of energy. Additionally, the transportation and construction of steel rebars also contribute to the carbon footprint of a building. The transportation process involves the use of fossil fuels, which release carbon dioxide into the atmosphere. Furthermore, the construction phase requires heavy machinery and equipment, which also rely on fossil fuels, further adding to the carbon emissions. Moreover, the carbon footprint of steel rebars extends beyond the construction phase. Steel is highly durable and can last for decades, but it also requires maintenance and potential replacement over time. These activities, such as repairs or demolitions, incur additional carbon emissions due to transportation, energy consumption, and waste management. However, it is important to note that steel rebars can offer environmental benefits when used in high-performance buildings or sustainable construction practices. For instance, steel is recyclable, and reusing steel rebars can significantly reduce the carbon footprint associated with their production. Additionally, steel rebars provide structural strength, allowing for the construction of taller and more efficient buildings that can potentially reduce energy consumption in the long run. To minimize the carbon footprint of a building, it is essential to consider alternative materials, such as recycled steel or other low-carbon materials, in the construction process. Additionally, implementing energy-efficient practices throughout the building's lifecycle, including reduced energy consumption and improved waste management, can further mitigate the environmental impact of steel rebars.
Q: Can steel rebars be used in railway and transportation infrastructure?
Yes, steel rebars can be used in railway and transportation infrastructure projects. Steel rebars are commonly used in the construction of bridges, tunnels, and other transportation-related structures due to their high strength, durability, and ability to withstand heavy loads. They provide structural reinforcement and enhance the overall stability and longevity of railway and transportation infrastructure.
Q: What is the recommended diameter of steel rebars for foundation reinforcement?
The recommended diameter of steel rebars for foundation reinforcement typically ranges from 10mm to 32mm, depending on the size and load-bearing requirements of the specific foundation project.
Q: How are steel rebars priced in the market?
Steel rebars are typically priced in the market based on factors such as the current demand and supply conditions, raw material costs, production and manufacturing expenses, transportation costs, and market competition. Additionally, market fluctuations, trade policies, and global economic conditions can also influence the pricing of steel rebars.
Q: How do steel rebars affect the aesthetics of a construction project?
Steel rebars, an essential element of reinforced concrete structures, have a significant influence on the aesthetics of construction projects. Although their primary purpose is to provide strength and reinforcement to concrete, their presence can have an impact on the overall appearance of the project. The visibility of steel rebars is one way they affect aesthetics. In infrastructure projects like bridges or parking garages, it is common to leave rebars exposed during construction. This exposure can create a distinct industrial or modern look that some find aesthetically pleasing. Architects and designers may intentionally embrace this raw and utilitarian appearance to achieve a specific aesthetic vision. However, in many architectural projects, particularly those involving residential or commercial buildings, the visibility of steel rebars is often undesirable. In such cases, rebars are typically concealed within the structure and covered with finishes such as concrete, plaster, or decorative cladding. This approach enhances the aesthetics of the construction project by shifting the focus from structural elements to the overall design and finishes. Furthermore, the placement and arrangement of rebars can also impact aesthetics. In intricate architectural designs, rebars must be precisely positioned to ensure the desired structural integrity. This presents challenges for designers as they strive to achieve functionality and visual appeal. However, with careful planning and coordination, rebars can be strategically placed to minimize their visual impact while maintaining the desired aesthetics of the project. It is important to note that aesthetics should never compromise the safety and structural integrity of a construction project. While efforts can be made to conceal or minimize the visual impact of steel rebars, proper installation and adherence to engineering standards must always take priority. Ultimately, the aesthetic impact of steel rebars on a construction project depends on the design intent, architectural style, and the balance between functionality and visual appeal.
Q: What is the difference between the material of steel thread and its use?
The grade of thread steel is composed of the minimum value of the yield point of HRB and brand. H, R, and B are the first letters in English for hot-rolled (Hotrolled), ribbed (Ribbed) and reinforced (Bars) three words. Hot rolled ribbed bar is divided into HRB335 (old No. 20MnSi), HRB400 (20MnSiV, 20MnSiNb, veteran, 20Mnti), HRB500 three brands.
Q: What are the different types of coating available for steel rebars?
There are several different types of coatings available for steel rebars, each with its own unique properties and benefits. Some of the most common types of coatings include: 1. Epoxy Coating: Epoxy coating provides excellent corrosion resistance and is commonly used in environments where steel rebars are exposed to moisture or harsh chemicals. It forms a protective barrier that prevents corrosion and extends the lifespan of the rebars. 2. Zinc Coating: Zinc coating, also known as galvanization, is one of the most widely used coatings for steel rebars. It provides excellent corrosion resistance and acts as a sacrificial layer, meaning it corrodes before the steel rebars do. This sacrificial protection helps to prevent rust and extend the life of the rebars. 3. Polyethylene Coating: Polyethylene coating is a type of thermoplastic coating that is commonly used for steel rebars in applications where electrical insulation is required. It provides excellent resistance to moisture, chemicals, and abrasion, making it suitable for use in a variety of environments. 4. Fusion-Bonded Epoxy Coating: Fusion-bonded epoxy coating is a type of coating that is applied to the rebars through a process of heat and pressure. It provides excellent adhesion and corrosion resistance, making it ideal for use in harsh environments such as marine or industrial applications. 5. Powder Coating: Powder coating is a dry finishing process that involves applying a fine powder to the rebars and then curing it in an oven. It provides a durable and protective coating that is resistant to corrosion, chemicals, and UV radiation. Powder coating is available in a wide range of colors, making it a popular choice for decorative applications. These are just a few examples of the different types of coatings available for steel rebars. The choice of coating will depend on the specific requirements of the project, such as the environmental conditions, expected lifespan, and desired performance characteristics.
Q: What are the different types of steel rebars used in road construction?
There are several types of steel rebars used in road construction, each with its own specific characteristics and advantages. Some of the commonly used types include: 1. Mild Steel Rebars: Also known as carbon steel rebars, these are the most commonly used type in road construction. They have a low carbon content and are relatively inexpensive. Mild steel rebars are suitable for general-purpose applications and provide good strength and ductility. 2. High Strength Deformed (HSD) Rebars: These rebars have higher tensile strength compared to mild steel rebars. They are manufactured by subjecting mild steel bars to mechanical treatments, such as hot rolling, quenching, and tempering. HSD rebars are used in areas where higher load-bearing capacity is required, such as bridge construction. 3. Stainless Steel Rebars: These rebars are corrosion-resistant due to their high chromium content. They are especially beneficial in areas with high humidity, coastal regions, or where road construction is exposed to corrosive substances. Stainless steel rebars are more expensive than other types but offer long-term durability. 4. Epoxy-Coated Rebars: These rebars are coated with epoxy to provide protection against corrosion. Epoxy coating acts as a barrier between the steel surface and the environment, preventing the penetration of moisture and corrosive elements. Epoxy-coated rebars are commonly used in concrete pavements to enhance the longevity of the road. 5. Galvanized Rebars: These rebars are coated with a layer of zinc to protect against corrosion. The zinc coating acts as a sacrificial layer, preventing the steel from coming into contact with corrosive elements. Galvanized rebars are commonly used in road construction projects where corrosion resistance is crucial, such as in areas with high levels of moisture or chemical exposure. It is important to select the appropriate type of steel rebars based on the specific requirements of the road construction project. Factors such as load-bearing capacity, environmental conditions, and budget considerations play a significant role in determining the most suitable type of rebar to be used.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords