• Steel Rebar, Deformed Steel Bar, Iron Rods For Construction System 1
  • Steel Rebar, Deformed Steel Bar, Iron Rods For Construction System 2
  • Steel Rebar, Deformed Steel Bar, Iron Rods For Construction System 3
Steel Rebar, Deformed Steel Bar, Iron Rods For Construction

Steel Rebar, Deformed Steel Bar, Iron Rods For Construction

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
1000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

deformed steel bar grade 40 
material: HRB400, BS4449 GR460B 
size: 8-36mmx12m. 
short delivery time by bulk or container

  deformed steel bar grade 40

material: HRB400, BS4449 GR460B
size: 8-36mmx12m. 
short delivery time with bulk or container

packing: Mill standard export packing in bundles/coil,  around 2tons/bundle.

country of Origin: China

delivery Time: Within a 35 days

Shipment: by bulk vessel or by container

Leading goods: 

 

section steel:angles,channels,I-beam,H-beam;

 

coils:cold/hot rolled coils,PPGI,galvanized coils,plate,checkered plate,cutting steel plate,steel strip;

 

wire rod:steel wire,deformed wire,bar;

 

pipe:seamless pipe,rectangular pipe,welded pipe,spiral welded pipe,pipe fittings;

 

stainless steel:steel sheets,stainless steel strips,stainless bar,stainless tube;

 

special:weathering steel,shipbuilding steel;

 

construction steel:C-channel,Z-channel,T-bar,high-speed divider plate,corrugated steel plate,steel grating.

 

Advantage:

We are the spot supplier, Six huge warehouses which can hold 20,000 MT goods.

It makes the cost lower than others,we can provide the competitive price for you.

Delivery time:

Normal sizes can be provided in 7days, the others should be ready in 30---45 days.

Further treatment:

 We can offer cutting,painting,drilling holes,bending,threading, welding,galvanization,packing etc.

 Security interest: 

We have already passed the ISO9001, BV and SGS authentication which makes the quality secured.

If you have the interest in any of the products we can provided, pls don't hesitate to connect with me. Looking forward to cooperate with you.




FAQ of Steel Deformed Bar

1. More than 10 years experience in this industry
2. 100,000 tons exporting per month
3. Professional foreign trade tea
4. OEM&ODM capacity
5. High quality assured & competitive price
6. Try our best to meet your needs & save your budget
7. Very popular in Southeast Asia, Africa, Mid-East and South America etc.
8. VIP membership system, first time customers and long-term cooperation customers can get extra discount on some products.



Q:What is the role of steel rebars in preventing concrete shrinkage?
Steel rebars play a crucial role in preventing concrete shrinkage by providing reinforcement and support to the concrete structure. The rebars, which are typically embedded within the concrete, help to distribute the tensile forces that occur during the drying and shrinking process of the concrete. This reinforcement helps to minimize and control the extent of shrinkage cracks, ensuring the overall stability, durability, and longevity of the concrete structure.
Q:What are the different surface finishes available for steel rebars?
There are several surface finishes available for steel rebars, including plain, deformed, epoxy coated, galvanized, and stainless steel. Each finish offers unique properties and benefits depending on the application and environment in which the rebars will be used.
Q:What are the common mistakes to avoid when handling and storing steel rebars?
When handling and storing steel rebars, it is important to avoid certain common mistakes to ensure their quality and longevity. Here are some mistakes that should be avoided: 1. Poor storage conditions: Storing steel rebars in damp or wet areas can lead to corrosion and rust. It is crucial to store them in a dry and well-ventilated space to prevent moisture accumulation. 2. Insufficient support: When stacking rebars, it is important to have proper support to prevent bending or deformation. Inadequate support can lead to rebar damage and compromise their structural integrity. 3. Improper lifting techniques: When handling rebars, it is essential to use proper lifting equipment and techniques. Using hooks or chains directly on the rebars can cause damage and weaken them. It is recommended to use lifting devices specifically designed for rebar handling. 4. Overloading: Avoid overloading storage racks or platforms with excessive weight. Overloading can cause structural failure and potentially injure workers. Always follow the manufacturer's guidelines for maximum weight capacity. 5. Lack of protection: Rebars should be protected from exposure to moisture, dirt, and other contaminants. Proper wrapping with plastic or waterproof covers can help prevent corrosion and maintain their quality. 6. Improper transportation: During transportation, care should be taken to secure the rebars properly to prevent movement or damage. Using appropriate restraints and padding can help prevent any potential accidents or rebar displacement. 7. Mixing different grades: Avoid mixing rebars of different grades together as they have varying strength and performance characteristics. Mixing different grades can compromise the overall structural integrity of the construction project. 8. Ignoring quality control: It is important to conduct regular quality checks on the rebars to ensure they meet the required specifications. Ignoring quality control can result in the use of substandard rebars, which can compromise the safety and durability of the structure. By avoiding these common mistakes, construction professionals can ensure the proper handling and storage of steel rebars, leading to safer and more durable structures.
Q:What are the common defects observed in steel rebars?
Steel rebars can exhibit several common defects, including rust and corrosion, cracks and fractures, lack of bond, bent or deformed shapes, dimensional inaccuracies, and inclusions or impurities. When exposed to moisture and oxygen, rebars are susceptible to rust and corrosion, which weaken their structural integrity and compromise the overall strength of concrete structures. Various factors such as excessive bending, improper handling during transportation and installation, or overloading can lead to cracks and fractures in rebars, reducing their load-bearing capacity and affecting the performance of concrete structures. Adequate bond between rebars and the surrounding concrete is crucial for effective load transfer, but poor surface preparation, improper placement, or the presence of contaminants can result in a lack of bond and reduced structural strength. Improper bending techniques, excessive bending, or mishandling can result in rebars with incorrect shapes or deformities, compromising their structural integrity and load-bearing capacity. Steel rebars must conform to specific dimensional tolerances to ensure proper fit and alignment within concrete structures, but manufacturing errors or improper storage and handling can cause dimensional inaccuracies, leading to difficulties during installation and potentially impacting structural performance. Ideally, steel rebars should be free from any inclusions or impurities that can weaken the material, but inadequate quality control during the manufacturing process can result in the presence of foreign materials or impurities, reducing the strength and durability of rebars. To minimize these defects and ensure the long-term structural integrity of concrete structures, it is important to implement proper quality control measures and adhere to industry standards during the manufacturing, transportation, and installation of steel rebars.
Q:What are the main uses of threaded steel?
The difference between round bar and round bar is that the surface has longitudinal ribs and transverse ribs, usually with two longitudinal ribs and transverse ribs uniformly distributed along the length direction.
Q:What are the guidelines for spacing and positioning steel rebars in concrete structures?
To ensure the structural integrity and durability of concrete structures, it is critical to adhere to guidelines for spacing and positioning steel rebars. Consider the following key guidelines: 1. Rebar Spacing: The spacing of steel rebars is determined by the structural engineer or designer and is typically expressed in terms of center-to-center spacing or clear distance between rebars. It is dependent on load requirements, concrete strength, and project-specific factors. Common spacing ranges from 4 to 12 inches. 2. Cover Depth: Concrete cover depth refers to the distance between the concrete's outer surface and the nearest rebar surface. Sufficient cover is essential to protect rebars from environmental factors like corrosion and fire. The cover depth varies based on exposure conditions and is specified in the project's design. 3. Rebar Positioning: Proper positioning of rebars is crucial to ensure they are placed accurately within the concrete structure. During concrete pouring, rebars should be securely supported and maintained in the correct alignment. Specific positioning requirements may include lap lengths, overlaps, or hooking at junctions for proper load transfer and structural continuity. 4. Chair Supports: To maintain correct spacing and elevation, rebar chair supports are widely used. These supports are placed beneath rebars at regular intervals to prevent sagging or displacement during concrete placement. The appropriate support type and height depend on project requirements and rebar diameter. 5. Tying and Binding: Appropriate tying and binding of rebars are essential to maintain their position and spacing during concrete pouring. Rebars should be securely tied using wire or rebar ties at suitable intervals, typically every 12-18 inches. The ties must be tight enough to prevent movement but not excessively tight to avoid damaging rebars or causing concrete segregation. 6. Concrete Consolidation: Proper consolidation of concrete around rebars is crucial to eliminate air voids and ensure proper bonding between the concrete and rebars. Vibrators or other consolidation techniques should be utilized to achieve proper compaction and thorough embedding of rebars in the concrete. Adherence to guidelines for spacing and positioning steel rebars in concrete structures is vital for ensuring the construction's structural strength, durability, and safety. It is essential to consult and follow the project's design specifications and engage qualified professionals to guarantee proper execution and adherence to these guidelines.
Q:How do steel rebars affect the thermal properties of a structure?
The thermal properties of a building or structure can be significantly influenced by steel rebars, which are commonly used in reinforced concrete structures. To begin with, steel rebars have a higher thermal conductivity than concrete. This means that when embedded within concrete, they can serve as thermal bridges, allowing heat to easily transfer through the structure. Consequently, there is increased heat loss during colder months and increased heat gain during warmer months, leading to higher energy consumption for heating and cooling. Additionally, the thermal expansion and contraction of the structure can be affected by steel rebars. Compared to concrete, steel has a higher coefficient of thermal expansion, causing it to expand and contract more with temperature changes. This differential movement between the steel rebars and the surrounding concrete can result in cracks and structural deformations, compromising the overall thermal performance of the structure. Moreover, the moisture behavior of a structure can also be influenced by steel rebars. As previously mentioned, steel has a higher thermal conductivity and electrical conductivity than concrete. This electrical conductivity can promote the corrosion of steel rebars when they come into contact with moisture or water. Consequently, corrosion leads to the formation of rust, which expands and further damages the surrounding concrete. This, in turn, increases moisture ingress, compromising the insulation properties of the structure and potentially causing mold growth and other moisture-related issues. To conclude, steel rebars have direct and indirect impacts on the thermal properties of a structure. They act as thermal bridges, affecting heat transfer, and their differential thermal expansion and corrosion potential can compromise the overall thermal performance and moisture behavior of the structure. Proper design, insulation, and corrosion protection measures should be implemented to mitigate these effects and ensure optimal thermal performance.
Q:Can steel rebars be used in road or highway construction?
Road or highway construction can utilize steel rebars. Reinforcing bars, also known as steel rebars, are commonly employed in the construction sector to bolster the strength and support of concrete structures. In the realm of road and highway construction, rebars are typically utilized in the creation of reinforced concrete pavements, bridge decks, and retaining walls. By embedding rebars in concrete, its tensile strength can be enhanced, as concrete is robust in compression but weak in tension. The addition of rebars to the concrete aids in distributing tensile forces, thus enhancing the overall longevity and load-bearing capacity of road or highway infrastructure. The utilization of steel rebars in road or highway construction presents numerous advantages. Firstly, it enhances the structural integrity and lifespan of the infrastructure, as reinforced concrete structures are better equipped to withstand heavy traffic loads, temperature fluctuations, and environmental factors. Secondly, rebars assist in mitigating cracking and deterioration of the concrete, thereby reducing the necessity for frequent repairs and maintenance. Additionally, the utilization of rebars allows for more efficient and cost-effective construction, as it permits the use of thinner concrete sections without compromising strength. All in all, steel rebars are an indispensable component in road or highway construction, as they provide the essential reinforcement to ensure the strength, durability, and longevity of the infrastructure.
Q:Can steel rebars be used in the construction of high-speed rail tracks?
Yes, steel rebars can be used in the construction of high-speed rail tracks. Steel rebars are commonly used as reinforcement in concrete structures, including railway tracks. They provide added strength and durability to the tracks, ensuring they can withstand the high speeds and heavy loads associated with high-speed rail systems.
Q:How are steel rebars handled and stored on construction sites?
Construction projects that require reinforced concrete structures rely on steel rebars, which are also known as reinforcing bars. Ensuring the quality and safety of these rebars when handling and storing them on construction sites is of utmost importance. Upon delivery to the construction site, the steel rebars must undergo inspection for any signs of damage or corrosion. If any rebars are found to be damaged, they should be discarded as they can compromise the project's structural integrity. Additionally, the rebars should be checked for proper labeling, including grade, size, and other specifications. Mechanical lifting equipment, such as cranes or forklifts, is typically used to handle steel rebars. It is crucial to use appropriate lifting tools to prevent mishandling or accidents that could result in injuries. The rebars should be lifted vertically to avoid bending or distortion. Once lifted, the steel rebars should be stored in a designated area called a rebar yard. This yard should be clean, well-drained, and organized to prevent potential damage or corrosion. The rebars should be stacked horizontally on leveled ground, ensuring they do not come into direct contact with the soil or water to avoid rusting. To prevent the rebars from rolling or falling, they should be securely tied together using binding wires or steel bands. This practice not only helps maintain the order and stability of the stored rebars but also prevents accidental damage by keeping them away from other construction materials, machinery, or equipment. Proper storage also involves protecting the rebars from adverse weather conditions. Waterproof tarpaulins or plastic sheets should be used to cover the rebars, preventing moisture absorption and corrosion. Adequate ventilation is necessary to avoid moisture accumulation, which can lead to rusting. Regular inspections of the stored rebars are crucial to identify any signs of damage or deterioration. If any rebars are found to be damaged or rusty, they should be promptly removed and replaced to preserve the structural integrity of the construction project. In conclusion, the handling and storage of steel rebars on construction sites require careful attention. Suitable lifting equipment should be used during handling, and a clean and organized rebar yard is necessary for storage. Regular inspections and maintenance are essential to ensure the rebars' quality and prevent any compromise to the construction project's structural integrity.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords