• Hot rolled high quality deformed bar ASTM A615 GR40 System 1
  • Hot rolled high quality deformed bar ASTM A615 GR40 System 2
  • Hot rolled high quality deformed bar ASTM A615 GR40 System 3
Hot rolled high quality deformed bar ASTM A615 GR40

Hot rolled high quality deformed bar ASTM A615 GR40

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
20000000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Deformed Bar Details:

Product Description:

Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400


Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm



Length

6M, 9M,12M or as required


Place of origin

Hebei, China mainland


Advantages

exact size, regular package, chemical and   mechanical properties are stable.


Type

Hot rolled deformed steel bar


Brand name

DRAGON


Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF


  • Steel Rebar / Deformed Bar / Reinforcing Bar

Steel Rebar / Deformed Bar / Reinforcing Bar

Steel Rebar / Deformed Bar / Reinforcing Bar



Q: What is the effect of fatigue on steel rebars?
Fatigue can significantly weaken steel rebars, leading to a decrease in their structural integrity and potential failure under repeated or cyclic loading. This can result in cracks, fractures, or even complete breakage of the rebars, compromising the overall strength and stability of the reinforced concrete structure they support. Therefore, it is crucial to monitor and address fatigue in steel rebars to ensure the safety and longevity of the construction.
Q: What is the difference between steel rebars and FRP rebars?
Steel rebars and FRP rebars are two different materials used for reinforcement in construction projects. The main difference between steel rebars and FRP (Fiber Reinforced Polymer) rebars lies in their composition and mechanical properties. Steel rebars are made of carbon steel and are known for their high tensile strength and durability. They have been widely used in construction for many years and are a reliable choice for reinforcing concrete structures. On the other hand, FRP rebars are made of fibers, such as glass or carbon, embedded in a polymer matrix. This composite material offers several advantages over steel rebars. Firstly, FRP rebars are lighter in weight, making them easier to handle and transport. This can reduce labor and equipment costs during construction. Secondly, FRP rebars are non-corrosive, unlike steel rebars. Steel rebars are prone to corrosion when exposed to moisture and chemicals, which can weaken the structure over time. FRP rebars do not rust or corrode, making them ideal for environments with high humidity, saltwater, or chemical exposure. Another significant difference is that FRP rebars have a high resistance to electromagnetic fields. This makes them suitable for applications in sensitive areas, such as hospitals, power plants, or telecommunication facilities, where electromagnetic interference should be minimized. However, there are also some limitations to consider with FRP rebars. They have lower tensile strength compared to steel rebars, which means they may not be suitable for heavy-load-bearing structures. Additionally, FRP rebars have a higher initial cost compared to steel rebars, although this can be offset by their long-term durability and reduced maintenance requirements. In summary, the main differences between steel rebars and FRP rebars lie in their composition, mechanical properties, and performance in different environmental conditions. Steel rebars offer high tensile strength but are vulnerable to corrosion, while FRP rebars are lighter, non-corrosive, and have a high resistance to electromagnetic fields. The choice between the two depends on the specific project requirements, load-bearing needs, and environmental factors.
Q: Can steel rebars be used in high-temperature applications?
No, steel rebars are not suitable for high-temperature applications as they may lose their strength and structural integrity at elevated temperatures.
Q: Can steel rebars be used in the construction of water treatment plants?
Yes, steel rebars can be used in the construction of water treatment plants. Steel rebars are commonly used in reinforced concrete structures, including water treatment plants, to provide strength and durability to the overall construction. The rebars help to reinforce the concrete and provide structural support, making them suitable for the rigorous demands and environmental conditions of water treatment plants.
Q: What are the guidelines for storing steel rebars on a construction site?
To ensure safety and maintain the quality of steel rebars stored on a construction site, it is important to follow several guidelines. Here are some key recommendations: 1. Choose a designated area on the construction site that is flat, clean, and well-drained for storing the rebars. Avoid areas that are prone to flooding or excessive moisture. 2. Elevate the rebars above the ground using wooden or concrete blocks to prevent direct contact with soil or water. This will help prevent rusting and corrosion. 3. Stack the rebars in a stable manner, aligning them vertically and horizontally to maintain their shape and prevent bending or warping. Use spacers or crates between layers to ensure proper spacing and prevent entanglement. 4. Protect the rebars from the elements by covering them with a waterproof tarp or plastic sheet. This will shield them from rain, snow, or excessive sunlight and prevent rusting and degradation. 5. Store different sizes and types of rebars separately to avoid mixing or confusion during construction. Clearly label and mark each stack to identify the type, size, and grade of the rebars. 6. Organize the rebars in a logical manner to provide easy access for construction workers. Place smaller rebars on top for easy retrieval and avoid storing heavier rebars on top of lighter ones to prevent damage. 7. Take safety precautions by maintaining a safe distance between the rebars and any heavy machinery or equipment to minimize the risk of accidents. Secure the rebars properly to prevent them from falling or causing injury. 8. Regularly inspect the rebars for any signs of damage, rust, or corrosion. Replace or repair any compromised rebars to avoid compromising the structural integrity of the construction project. By following these guidelines, construction sites can ensure the proper storage of steel rebars, promoting safety, efficiency, and the longevity of the rebars.
Q: How are steel rebars inspected for quality on construction sites?
Steel rebars are inspected for quality on construction sites through visual inspection, dimensional measurements, and various non-destructive testing methods such as ultrasonic testing, magnetic particle testing, and radiographic testing. These inspections ensure that the rebars meet the required specifications, are free from defects, and have the necessary strength and durability for their intended use in construction projects.
Q: Can steel rebars be used in underwater structures?
Yes, steel rebars can be used in underwater structures. However, they need to be coated or protected to prevent corrosion caused by the water and salt exposure. Special measures such as using corrosion-resistant coatings or epoxy coatings are typically applied to ensure the longevity and durability of the rebars in such environments.
Q: What are the disadvantages of using steel rebars?
One of the disadvantages of using steel rebars is their susceptibility to corrosion. Over time, exposure to moisture and other environmental factors can cause the rebars to rust, weakening their structural integrity. This corrosion can lead to structural damage and compromise the overall strength of the reinforced concrete. Additionally, steel rebars are heavy and can be difficult to handle and transport, which can increase construction costs and labor requirements.
Q: How do steel rebars affect the overall maintenance requirements of concrete structures?
Steel rebars, being strong and durable, enhance the structural integrity of concrete structures. By providing reinforcement, rebars help in distributing the load and increasing the resistance to cracking and tension. This leads to reduced maintenance requirements for concrete structures as they become more resistant to wear and tear, environmental factors, and potential structural failures.
Q: How do steel rebars affect the overall cost-effectiveness of a structure?
Steel rebars play a crucial role in enhancing the overall cost-effectiveness of a structure. These reinforcement bars are widely used in construction projects to provide strength, durability, and stability to concrete structures. By incorporating steel rebars, the lifespan of a structure is significantly increased, reducing the need for frequent repairs and maintenance, thereby lowering long-term costs. One of the key benefits of using steel rebars is their ability to reinforce concrete, making it capable of withstanding heavy loads and forces. This reinforcement prevents cracks and structural failures, ensuring the longevity of the structure. As a result, the need for costly repairs and replacements is minimized, resulting in cost savings over the lifespan of the structure. Moreover, steel rebars enhance the overall structural integrity of a building, reducing the risk of damage caused by natural disasters such as earthquakes and high winds. This increased resilience not only saves lives but also reduces the financial burden of rebuilding or repairing a damaged structure. In addition to their strength and durability, steel rebars provide cost-effectiveness during construction itself. These bars can be prefabricated off-site, allowing for efficient and streamlined construction processes. This reduces labor costs, accelerates construction timelines, and minimizes material wastage, leading to overall cost savings. Furthermore, steel rebars can be recycled, making them an environmentally friendly choice. The recycling process not only reduces the demand for raw materials but also lowers production costs, contributing to the cost-effectiveness of a structure. In summary, steel rebars enhance the cost-effectiveness of a structure by increasing its longevity, reducing maintenance and repair costs, improving resilience to natural disasters, optimizing construction processes, and promoting environmental sustainability. By incorporating steel rebars into construction projects, developers and owners can maximize the return on investment while ensuring the safety and longevity of the structure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords