Hot rolled high quality deformed bar ASTM A615 GR40
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 20000000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Deformed Bar Details:
Product Description:
Specifications of HRB400 Deformed Steel Bar:
Standard | GB | HRB400 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Place of origin | Hebei, China mainland | ||
Advantages | exact size, regular package, chemical and mechanical properties are stable. | ||
Type | Hot rolled deformed steel bar | ||
Brand name | DRAGON |
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 |
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
Usage and Applications of HRB400 Deformed Steel Bar:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of HRB400 Deformed Steel Bar:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Payment term: TT or L/C
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
- Q: What is the effect of exposure to acidic soil on steel rebars?
- Exposure to acidic soil can have a detrimental effect on steel rebars. The acidic nature of the soil can cause corrosion and degradation of the steel rebars over time. This corrosion weakens the rebars, reducing their structural integrity and potentially leading to structural failures in constructions where they are used. Regular inspections and appropriate measures, such as protective coatings or using non-corrosive materials, are necessary to prevent or mitigate the negative effects of acidic soil on steel rebars.
- Q: Is the tie bar used for the longitudinal joint of cement concrete pavement threaded or smooth? Where is the dowel bar for the transverse joint construction?
- Longitudinal tie rod. Longitudinal seam usually has longitudinal contraction joint and longitudinal construction joint two kinds, two kinds of longitudinal joints should be provided with tie rod. The bar shall be designed with the length of the threaded steel to ensure the bond between it and the concrete, and the diameter and spacing of the tie rod shall also be guaranteed. Thus, the tie rod can not provide enough tensile force, and when the concrete faceplate is contracted, the longitudinal joint is pulled apart to form a crack.
- Q: What is the process of reinforcing concrete walls with steel rebars?
- To ensure the strength and integrity of a concrete wall, it is necessary to reinforce it with steel rebars. This process consists of several steps. Engineers first determine the design and layout of the rebars based on the specific requirements of the wall. This involves considering the diameter, spacing, and placement of the rebars. Once the design is finalized, construction of the concrete wall can begin. The rebars are typically placed in a grid-like pattern within the formwork or molds. They are positioned at predetermined intervals and secured in place using wire ties or other fastening methods. During the pouring of the concrete, the rebars are completely enclosed within the mixture. This ensures that the concrete and steel work together to resist tension forces and provide additional strength to the wall. Once the concrete has been poured and cured, the rebars become an integral part of the structure. They act as reinforcement by absorbing and distributing tensile forces that may arise from external loads or environmental factors. In addition to the initial reinforcement, construction workers may also install vertical rebars along the height of the wall, commonly referred to as wall ties. These rebars provide further stability and prevent the wall from cracking or collapsing under pressure. Overall, the process of reinforcing concrete walls with steel rebars requires careful planning, precise placement, and proper integration between the rebars and the concrete. This technique significantly enhances the strength and durability of the walls, enabling them to withstand heavier loads and ensuring the safety of the structure.
- Q: What is the cost of steel rebars compared to other construction materials?
- The cost of steel rebars is generally higher compared to other construction materials due to its durability, strength, and longevity. However, it is important to consider the specific project requirements, as cost can vary depending on the market and availability of alternative materials.
- Q: What is the average lifespan of a reinforced concrete structure with steel rebars?
- The average lifespan of a reinforced concrete structure with steel rebars can vary depending on various factors such as design, construction quality, environmental exposure, and maintenance. However, with proper design, construction practices, and regular maintenance, reinforced concrete structures with steel rebars can typically last for several decades or even over a century.
- Q: What is the effect of exposure to chemicals on the durability of steel rebars?
- Exposure to chemicals can have a detrimental effect on the durability of steel rebars. Chemicals, such as acids or salts, can lead to corrosion and the formation of rust on the surface of rebars. This corrosion weakens the structure and compromises its integrity, reducing the lifespan and load-bearing capacity of the rebars. Regular inspection, maintenance, and protective coatings are crucial to mitigate the negative impact of chemical exposure and ensure the long-term durability of steel rebars.
- Q: Are steel rebars suitable for use in foundation structures?
- Yes, steel rebars are suitable for use in foundation structures. They provide strength and reinforcement to concrete, enhancing its load-bearing capacity and durability. Steel rebars are commonly used in foundation construction due to their high tensile strength and ability to withstand heavy loads and stress.
- Q: How do steel rebars affect the overall vibration resistance of a structure?
- The overall vibration resistance of a structure can be significantly enhanced by the use of steel rebars. These reinforcement bars, also known as rebars, are typically made of high-strength steel and are commonly utilized in reinforced concrete structures. Rebars play a crucial role in providing tensile strength to the concrete, which is inherently weak in tension. By embedding the rebars within the concrete, they effectively counteract the potential tensile forces resulting from applied loads or vibrations. Steel rebars assist in distributing stress and strain throughout the structure, thereby preventing localized failure points and increasing the overall structural integrity. Furthermore, rebars act as a damping mechanism in the case of vibrations, absorbing and dissipating vibrational energy. This damping effect reduces both the amplitude and frequency of vibrations, thereby enhancing the structure's resistance to damage caused by vibrations. Additionally, the presence of rebars enhances the dynamic properties of the structure, including its natural frequency and mode shapes. This is particularly crucial in structures such as bridges, tall buildings, or industrial facilities, where external factors like wind, seismic events, or machinery operations can induce vibrations. To summarize, steel rebars enhance the overall vibration resistance of a structure by providing additional strength, distributing stress, and acting as a damping mechanism. Their presence improves structural integrity, reduces the risk of failure, and ensures the safety and longevity of the construction.
- Q: Can steel rebars be bent or shaped during construction?
- During construction, it is possible to bend or shape steel rebars. These rebars are commonly utilized in reinforced concrete structures to enhance their strength and stability. Although they are typically produced in straight lengths, they can be easily customized to fit the specific design requirements of the construction project. This adaptability allows contractors to reinforce different areas of the structure, including columns, beams, or slabs, by modifying the rebars. Specialized equipment, such as rebar benders or hydraulic tools, is usually employed in the process of bending or shaping the rebars. By doing so, construction professionals can guarantee that the reinforced concrete structure satisfies the necessary load-bearing and structural integrity standards.
- Q: What is the effect of steel rebars on the electrical conductivity of concrete?
- Steel rebars have a negligible effect on the electrical conductivity of concrete due to their low electrical resistance.
Send your message to us
Hot rolled high quality deformed bar ASTM A615 GR40
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 20000000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords