• Steel Rebar, Deformed Steel Bar, Iron Rods for Construction System 1
  • Steel Rebar, Deformed Steel Bar, Iron Rods for Construction System 2
  • Steel Rebar, Deformed Steel Bar, Iron Rods for Construction System 3
Steel Rebar, Deformed Steel Bar, Iron Rods for Construction

Steel Rebar, Deformed Steel Bar, Iron Rods for Construction

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
1000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Deformed Steel
Shape:
Steel Round Bar

Steel rebar, Deformed Steel Bar, Iron Rods for Construction 

 

Product information

1. Produce Standard:  GB, AISI, ASTM, SAE, EN, BS, DIN, JIS

2. Produce processes:   Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

3. Heat treatment: Normalized / Annealed / Quenched+Tempered

4. Quality assurance: All order we can received  third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.

 

Product detail

Deformed  Steel  

1) Product name: Deformed Steel Bar

2) Standard and grade: a) GB1499-98 HRB335,HRB400,HRB500  b)BS4449-1997 GR460

3) Diameter: 8mm; 10mm; 12mm;14mm; 16mm;18mm; 20mm; 22mm; 25mm; 28mm; 30mm;  32mm; 40mm; 

4) Length: 9m, 12m 

5) Packing: Mill standard export packing in bundles, 2tons/bundle  or 2tons/coil.
6) Country of Origin :China
7) Applications:The products are widely used in construction, road, machinery processing, and welding fields.

8)Delivery Time :Within 20  days.

 

 Product show

Steel Rebar, Deformed Steel Bar, Iron Rods for Construction

 

Work shop

 Steel Rebar, Deformed Steel Bar, Iron Rods for Construction

 

Our Services

* Welcome to contact us with your detailed inquiry, you will be replied within 24 hours.

* You are promised to obtain the best quality, price and service.

* We'd like to provide samples for your confirm.

 

Q: How does special steel contribute to the energy storage sector?
Special steel plays a crucial role in the energy storage sector by providing essential components for various energy storage systems. One significant application of special steel is in the manufacturing of batteries, which are essential for storing energy in various forms. Special steel is ideal for battery casings and frames due to its high strength, excellent corrosion resistance, and durability. Battery casings made from special steel can withstand high pressures and protect the internal components from external impacts, ensuring the safety and reliability of the entire energy storage system. Furthermore, special steel is utilized in the production of electrodes, a critical component of batteries. Electrodes require materials that can efficiently conduct electricity while enduring repeated charge and discharge cycles. Special steel, such as stainless steel, possesses excellent electrical conductivity and can withstand the demanding conditions within batteries, making it an ideal choice for electrode manufacturing. Additionally, special steel is employed in the construction of infrastructure for energy storage systems. Steel structures are used to support large-scale energy storage devices like pumped hydro storage facilities and compressed air energy storage systems. These structures must be strong, durable, and resistant to environmental conditions. Special steel provides the necessary strength and corrosion resistance to ensure the longevity and reliability of these energy storage infrastructure projects. In summary, special steel contributes significantly to the energy storage sector by providing essential components for batteries, such as casings and electrodes. It also plays a vital role in the construction of infrastructure for energy storage systems. With its exceptional properties, special steel enhances the safety, efficiency, and durability of energy storage technologies, thereby facilitating the growth and advancement of the renewable energy sector as a whole.
Q: How does special steel perform in high-velocity impact conditions?
Special steel is specifically engineered to excel in high-velocity impact situations, providing outstanding performance. Its composition and metallurgical properties are unique, resulting in remarkable resistance to deformation and failure under extreme forces. A key characteristic of special steel is its exceptional strength, enabling it to withstand the immense forces encountered in high-velocity impact scenarios. This strength is achieved through meticulous alloying and heat treatment processes that enhance the material's capacity to absorb and distribute energy. Consequently, special steel can effectively resist deformation and preserve its structural integrity even when subjected to severe impact loads. Moreover, special steel possesses remarkable toughness, allowing it to absorb significant amounts of energy before fracturing. This characteristic is crucial in high-velocity impact conditions where the material must endure sudden and intense forces. The high toughness of special steel permits it to absorb and dissipate the impact energy, preventing catastrophic failure and ensuring the ongoing performance of the component or structure. Additionally, special steel often exhibits superb resistance to wear and abrasion, which is advantageous in high-velocity impact scenarios involving sliding or rubbing contact. This wear resistance guarantees that the material maintains its integrity and functionality even during prolonged and repetitive impact conditions, reducing the risk of premature failure. Overall, special steel excels in high-velocity impact conditions due to its exceptional strength, superb toughness, and superior wear resistance. Its ability to withstand extreme forces and efficiently absorb impact energy makes it the preferred choice for applications where durability and reliability are of utmost importance.
Q: What are the applications of special steel in the nuclear industry?
Special steel is extensively used in the nuclear industry due to its exceptional properties. It is primarily employed in the construction of reactor vessels, containment structures, and fuel storage systems. Its high strength, corrosion resistance, and ability to withstand extreme temperatures make it an ideal material for these critical components. Additionally, special steel is also utilized in the production of nuclear fuel rods, shielding materials, and various other components that require excellent mechanical properties and resistance to radiation damage.
Q: How is wear-resistant stainless steel used in the production of cutting tools?
Wear-resistant stainless steel is used in the production of cutting tools due to its exceptional strength and resistance to wear and corrosion. This type of stainless steel is specifically designed to withstand high levels of stress and friction, making it ideal for tools that require cutting, shearing, or shaping. The wear resistance of stainless steel ensures that the cutting edges of these tools remain sharp and durable over extended periods of use, resulting in increased productivity and longer tool lifespan.
Q: How does special steel withstand high temperatures?
Special steel is able to withstand high temperatures due to its unique composition and manufacturing process. Firstly, special steel is made from alloys that contain elements such as chromium, nickel, and molybdenum, which provide increased resistance to heat. These elements form a protective oxide layer on the surface of the steel, preventing oxidation and corrosion at high temperatures. Furthermore, special steel goes through specific heat treatment processes, such as quenching and tempering, which enhance its strength and toughness. These processes involve heating the steel to high temperatures and then rapidly cooling it, followed by reheating and slow cooling. This controlled cooling and heating process modifies the steel's microstructure, making it more resistant to thermal stress and deformation. Additionally, special steel is often designed to have a high melting point, which allows it to maintain its structural integrity even in extreme temperatures. The specific combination of elements and their ratios in the alloy contribute to the steel's ability to resist softening or melting when exposed to high heat. Moreover, special steel may also incorporate specialized coatings or treatments that further enhance its thermal resistance. These coatings can provide an extra layer of protection against heat, oxidation, and corrosion, making the steel even more durable and long-lasting in high-temperature environments. In summary, special steel withstands high temperatures by virtue of its unique alloy composition, heat treatment processes, high melting point, and additional protective coatings. These factors work together to enhance the steel's ability to resist thermal stress, deformation, oxidation, and corrosion, making it a reliable and durable material for applications in extreme heat conditions.
Q: What are the different methods of preventing hydrogen embrittlement in special steel?
There are several methods that can be employed to prevent hydrogen embrittlement in special steel. These include proper material selection, such as using low-hydrogen alloys or stainless steel grades that are less susceptible to embrittlement. Additionally, controlling the environment during manufacturing and storage processes is crucial, as hydrogen absorption can occur during these stages. Other preventive measures include heat treatment processes like stress relieving and tempering, which can help reduce internal stresses and enhance the steel's resistance to embrittlement. Overall, a combination of careful material selection, controlled environments, and appropriate heat treatment techniques can effectively prevent hydrogen embrittlement in special steel.
Q: How does special steel contribute to improving product performance?
Special steel contributes to improving product performance in several ways. Firstly, special steel is known for its superior strength and durability, which enhances the overall performance and longevity of the product. This is particularly important in industries such as automotive, aerospace, and construction, where high-performance materials are required to withstand extreme conditions and heavy loads. Additionally, special steel offers excellent corrosion resistance, allowing products to maintain their structural integrity and aesthetic appeal over time. Furthermore, special steel can be tailored to specific requirements, enabling manufacturers to create products with optimized characteristics such as increased hardness, toughness, or heat resistance. Overall, the use of special steel in manufacturing processes significantly enhances product performance and ensures the delivery of high-quality, reliable, and long-lasting goods.
Q: What are the different methods of surface pickling for special steel?
There are several methods of surface pickling for special steel, including acid pickling, electrolytic pickling, and mechanical pickling. Acid pickling involves immersing the steel in an acid solution to remove impurities and oxides from the surface. Electrolytic pickling uses an electric current to remove contaminants from the surface of the steel. Mechanical pickling involves using abrasive materials or mechanical force to physically remove impurities and oxides from the surface. Each method has its advantages and may be chosen based on the specific requirements of the steel and the desired outcome.
Q: How does special steel contribute to improving product functionality?
Special steel contributes to improving product functionality in several ways. Firstly, special steel offers enhanced strength and durability, allowing products to withstand higher loads and perform under extreme conditions. It also provides superior resistance to corrosion, which extends the lifespan of products and reduces maintenance costs. Additionally, special steel can be tailored to specific applications, such as high-temperature environments or magnetic properties, further enhancing product functionality. Overall, the use of special steel results in more reliable and efficient products, ultimately benefiting consumers and industries alike.
Q: What are the different methods of hardening special steel?
There exist various techniques for strengthening special steel, each possessing its own merits and suitable applications. 1. Quenching: A widely employed approach for steel hardening, it entails heating the steel to a critical temperature and rapidly cooling it in a quenching medium such as oil, water, or air. This rapid cooling prompts the formation of a martensitic structure, rendering the steel harder but more brittle compared to its original state. 2. Tempering: Following quenching, steel is often subjected to tempering to decrease brittleness and enhance toughness. This process involves reheating the hardened steel to a specific temperature and maintaining it at that temperature for a predetermined duration. By doing so, internal stresses are reduced, and the overall mechanical properties of the steel are improved. 3. Case hardening: Employed to augment the hardness of the outer layer of steel while preserving a tough and ductile core, case hardening involves introducing carbon or nitrogen into the steel's surface through methods like carburizing or nitriding. This results in the creation of a hardened surface layer while retaining the desired properties within the core. 4. Induction hardening: Particularly useful for localized hardening of specific regions within a component, this technique employs an electromagnetic field to solely heat the desired area of the steel, followed by rapid quenching. Induction hardening allows precise control over the hardened region while maintaining desired properties in the remainder of the component. 5. Cryogenic treatment: Involving subjecting hardened steel to extremely low temperatures, often below -150°C (-238°F), this process further refines the steel's microstructure, enhancing its hardness, wear resistance, and dimensional stability. 6. Flame hardening: This method entails heating the steel's surface using a high-temperature flame and subsequently quenching it. Flame hardening is typically employed for large components or specific areas requiring localized hardening. Selecting the appropriate method is crucial and dependent on the steel's specific requirements and intended application. Factors such as desired hardness, toughness, wear resistance, and dimensional stability play a pivotal role in method selection.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords