• Steel Formwork for Skyspare Export to Indonesia System 1
  • Steel Formwork for Skyspare Export to Indonesia System 2
  • Steel Formwork for Skyspare Export to Indonesia System 3
  • Steel Formwork for Skyspare Export to Indonesia System 4
  • Steel Formwork for Skyspare Export to Indonesia System 5
  • Steel Formwork for Skyspare Export to Indonesia System 6
Steel Formwork for Skyspare Export to Indonesia

Steel Formwork for Skyspare Export to Indonesia

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Introduction for Steel Formwork :

Steel Formwork:used in highway,railway,bridge,tunnel and shearing wall,etc.Our company CNBM which is one of the largest State-Owned Enterprises in China which established in 1984 , has gained the confirmation from the specialist of China Architecture Scence Institute, and has been used by many building operation units and has been highly praised.In 2014, the total turnover volume of CNBM exceeds US$410 billion dollars with a total staff of 180,000. CNBM is listed in the World Top 500 Enterprises !

 

Characteristic for Wholly Steel Formwork :

1. High Smooth Surface

2. Convex ling for Edge Rib

3. Specialized Connection Pin for Edge Rib Connection

4. High Stiffness for Steel Surface

5. Light Weight for saving producing cost

6. Fast Separate and Easy transport

7. Recycling using

8. Scientific and Reasonable design to meet different working condition

 

Parameter and Specification :

Code

Size (mm)

Weight (KG)

Code

Size (mm)

Weight (KG)

P12021

1200*2100*55

102.96

P4018

400*1800*55

28.3

P12018

1200*1800*55

88.4

P4015

400*1500*55

23.8

P12015

1200*1500*55

74.15

P4012

400*1200*55

19.1

P12012

1200*1200*55

60.11

P4009

400*900*55

14.6

P10018

1000*1800*55

76.01

P4007

400*750*55

12.3

P10015

1000*1500*55

63.96

P4006

400*600*55

9.95

P10012

1000*1200*55

60.11

P3018

300*1800*55

20.7

P10009

1000*900*55

39.32

P3015

300*1500*55

17.4

P9018

900*1800*55

70.89

P3012

300*1200*55

14

P9015

900*1500*55

59.47

P3009

300*900*55

10.7

P9012

900*1200*55

48.03

P3007

300*750*55

8.8

P7518

750*1800*55

57.8

P3006

300*600*55

7.3

P7515

750*1500*55

48.47

P3004

300*400*55

5.46

P7512

750*1200*55

39.16

P2515

250*1500*55

15.17

P7509

750*900*55

29.85

P2512

250*1200*55

12.24

P7507

750*750*55

24.81

P2509

250*900*55

9.32

P6018

600*1800*55

43.1

P2507

250*750*55

7.71

P6015

600*1500*55

36.3

P2506

250*600*55

6.39

P6012

600*1200*55

31.7

P2015

200*1500*55

11.6

P6009

600*900*55

23.9

P2012

200*1200*55

9.4

P6007

600*750*55

18.55

P2009

200*900*55

7.1

P6006

600*600*55

16.25

P2007

200*750*55

5.9

P5018

500*1800*55

36.27

P2006

200*600*55

6.39

P5015

500*1500*55

30.15

P2004

200*450*55

3.64

P5012

500*1200*55

25.55

P1515

150*1500*55

9.5

P5009

500*900*55

20.38

P1506

150*600*55

4

P5007

500*750*55

15.48

P1504

150*450*55

2.98

P5006

500*600*55

13.58

P1015

100*1500*55

7.5

 

Code

Size (mm)

Weight (KG)

P1012

100*1200*55

6.9

P1009

100*900*55

4.6

P1007

100*750*55

3.8

P1006

100*600*55

3.1

P1004

100*450*55

2.33

E1515

150*150*1500

15.2

E1512

150*150*1200

12.26

E1509

150*150*900

9.34

E1507

150*150*750

7.77

E1506

150*150*600

6.46

E1504

150*150*450

4.87

E1015

100*150*1500

13.13

E1012

100*150*1200

10.61

E1009

100*150*900

8.07

E1006

100*150*600

5.44

Y1018

100*150*1800

14.56

Y1015

100*150*1500

12.29

Y1012

100*150*1200

9.72

Y1009

100*150*900

7.46

Y1007

100*150*700

6.19

Y1006

100*150*600

5.19

Y1004

100*150*450

3.92

J0018

50*50*1800

4.34

J0015

50*50*1500

3.7

J0012

50*50*1200

2.94

J0009

50*50*900

2.3

J0007

50*50*750

1.9

J0006

50*50*600

1.5

J0004

50*50*450

1.13

FAQ :

 

1. Who are we ?

We , CNBM , are a State-Owned Enterprise which established in 1984 , have 32 years experience ,enjoy high reputation .

 

2. Our Advantage :

Customized products , we have our own R&D department , we can design the drawing and suggest the suitable solution for your project .

 

3. Our after-Sales Service :

The international Sales Manager and Engineer can go to your job site for work direction and help you deal with your project . 

 

Factory Photos :

 

Steel Formwork for Skyspare Export to Indonesia

 

Steel Formwork for Skyspare Export to Indonesia

 

Steel Formwork for Skyspare Export to Indonesia

 

Steel Formwork for Skyspare Export to Indonesia

 

Steel Formwork for Skyspare Export to Indonesia

 

 

Q: What are the different types of steel formwork systems available?
There are several different types of steel formwork systems available, including traditional steel formwork, modular steel formwork, and tunnel formwork. Traditional steel formwork consists of steel panels and supports that are assembled on-site to create the desired formwork structure. Modular steel formwork, on the other hand, is pre-assembled in a factory and can be easily transported and installed. Lastly, tunnel formwork is a specialized type of steel formwork used for constructing tunnels, where the formwork is moved forward as the tunnel progresses.
Q: How does steel formwork contribute to the overall construction process?
Steel formwork is a crucial component in the construction process as it provides a sturdy and durable framework for pouring concrete. It ensures that the concrete is poured into the desired shape and size, allowing for the creation of accurate and precise structures. Steel formwork also helps speed up the construction process by providing a reusable and easily adjustable system, reducing labor and material costs. Additionally, it enhances the overall strength and stability of the structure, making it an essential element for the successful completion of construction projects.
Q: What are the different safety training requirements for steel formwork installation?
The safety training requirements for steel formwork installation may vary depending on the specific regulations and guidelines set by different countries and organizations. However, here are some common safety training requirements that are typically applicable: 1. General Construction Safety Training: All workers involved in steel formwork installation should undergo general construction safety training. This training usually covers topics such as hazard recognition, proper use of personal protective equipment (PPE), fall protection, and proper lifting techniques. 2. Steel Formwork Specific Training: Workers should receive specialized training on the specific techniques and procedures related to steel formwork installation. This training may include topics such as proper assembly and dismantling techniques, securing formwork to prevent collapse, and ensuring stability during concrete pouring. 3. Equipment Training: Workers should be trained on the safe operation of any equipment used during steel formwork installation. This may include training on the safe use of cranes, forklifts, or any other machinery involved in the process. 4. Hazard Communication: Workers should receive training on hazard communication, including understanding safety signs and labels, handling hazardous materials, and knowing how to respond to emergency situations. 5. First Aid and CPR Training: It is important for workers to be trained in first aid and CPR techniques to be prepared for any potential accidents or injuries that may occur during steel formwork installation. 6. Scaffold Safety Training: If scaffolding is used during the installation process, workers should undergo scaffold safety training to ensure they understand how to assemble, use, and dismantle scaffolding safely. 7. Job-Specific Safety Training: Depending on the specific tasks involved in steel formwork installation, workers may need additional job-specific safety training. This could include training on working at heights, working with power tools, or working in confined spaces. It is essential for employers and workers to follow the applicable safety regulations and ensure that all necessary training is provided to create a safe working environment during steel formwork installation.
Q: How does steel formwork handle different concrete admixtures?
Steel formwork is highly compatible with different concrete admixtures. The rigid and durable nature of steel allows it to withstand the chemical reactions and physical properties of various admixtures, such as accelerators, retarders, and plasticizers. Steel formwork ensures the proper containment and shaping of the concrete, regardless of the admixtures used, resulting in a high-quality finished product.
Q: Are there any specific design considerations for steel formwork?
Yes, there are specific design considerations for steel formwork. These include factors such as the strength and stability of the steel structure, the weight-bearing capacity of the formwork, ease of assembly and disassembly, compatibility with different concrete mixtures, and the ability to withstand various site conditions such as weather and construction loads. Additionally, the design should also consider the reusability and durability of the steel formwork system to ensure cost-effectiveness and sustainability in construction projects.
Q: How does steel formwork compare to wooden formwork in terms of cost?
Steel formwork is generally more expensive than wooden formwork. However, it offers longer durability and can be reused multiple times, reducing the overall cost in the long run. Additionally, steel formwork provides better accuracy and stability, resulting in improved quality of construction.
Q: Are there any special considerations when using steel formwork in cold weather conditions?
Special considerations should be taken into account when using steel formwork in cold weather conditions. Firstly, the cold temperatures can cause steel to contract and become more brittle, increasing the risk of cracks or fractures in the formwork. Therefore, it is important to ensure that the steel formwork is properly designed and reinforced to withstand the potential stress caused by temperature changes. Secondly, the curing process of concrete can be affected by the cold weather. Steel formwork tends to conduct heat away from the concrete, slowing down the curing process. This can result in insufficient strength development and compromise the structural integrity. To address this, additional measures may be necessary, such as using insulating materials or applying external heat sources to maintain optimal curing conditions. Furthermore, cold weather can lead to the formation of ice on the surface of the steel formwork due to moisture freezing. This can increase the weight of the formwork and make its removal difficult. Additionally, it can cause damage if not properly managed. Therefore, preventive measures must be taken, such as using anti-freeze agents or ensuring adequate drainage to prevent ice buildup. Lastly, working in cold weather conditions can pose challenges for construction workers. It is crucial to implement appropriate safety measures, including providing sufficient insulation, heating facilities, and protective clothing to prevent workers from experiencing hypothermia or other cold-related illnesses. In conclusion, when working with steel formwork in cold weather conditions, it is important to consider the increased risk of brittleness, the impact on concrete curing, the potential for ice formation, and the well-being of workers. By taking these special considerations into account, the use of steel formwork can still be efficient and effective in cold weather conditions.
Q: Can steel formwork be used for tall structures?
Yes, steel formwork can be used for tall structures. Steel formwork is a versatile and durable option for constructing tall buildings. It offers significant advantages such as high strength, rigidity, and stability, making it an ideal choice for tall structures. Steel formwork can withstand the high pressures exerted by fresh concrete and provide a smooth and even surface finish. It is also reusable, reducing construction costs and environmental impact. Additionally, steel formwork allows for precise customization and can be easily adjusted to accommodate various architectural designs and structural requirements. Overall, steel formwork is a reliable and efficient solution for constructing tall structures.
Q: Can steel formwork be used for earthquake-resistant concrete buildings?
Indeed, earthquake-resistant concrete buildings can utilize steel formwork. Steel formwork pertains to a temporary structure employed to support and shape the concrete until it solidifies and becomes firm. It is renowned for its robustness, longevity, and capacity to endure substantial loads, which are desirable traits in earthquake-resistant construction. During seismic events, buildings endure lateral forces and vibrations. Given its strength and rigidity, steel formwork aids in distributing and transferring these forces across the entirety of the structure. It furnishes the necessary support to guarantee that the concrete walls, columns, and slabs remain intact amidst seismic occurrences. Moreover, steel formwork allows for precision and accuracy throughout the construction process. This is pivotal in earthquake-resistant buildings as any deviation from the intended design can undermine the structure's ability to withstand seismic forces. The utilization of steel formwork assures that the concrete components are adequately reinforced with steel bars and that all essential connections and joints are correctly positioned. Furthermore, steel formwork can be easily assembled, disassembled, and reused, rendering it a cost-effective solution for earthquake-resistant construction endeavors. This facilitates efficient construction practices, diminishes waste, and permits the formwork to serve multiple projects, thereby making it an environmentally friendly choice. Nonetheless, it is crucial to acknowledge that while steel formwork plays a crucial role in earthquake-resistant concrete buildings, it is not the sole determinant of the overall structural integrity. Other design considerations, including proper reinforcement detailing, sufficient foundation design, and appropriate structural analysis, hold equal importance. To conclude, steel formwork can be effectively employed in earthquake-resistant concrete buildings due to its strength, durability, and ability to withstand seismic forces. However, it must be accompanied by proper design and construction practices to ensure the overall structural resilience and safety of the building.
Q: How does steel formwork affect the overall construction site waste recycling?
The overall waste recycling at a construction site can be greatly influenced by steel formwork. In contrast to traditional timber formwork, steel formwork is more long-lasting and can be reused multiple times. This results in a decrease in waste production at the construction site since there is less necessity for the production and disposal of new formwork materials. Furthermore, cleaning and maintaining steel formwork is simpler, which extends its lifespan and reduces the need for replacement. This not only decreases waste but also saves costs associated with purchasing new formwork materials for each construction project. Moreover, steel formwork is highly recyclable. Once its life cycle is complete, it can be recycled and utilized to manufacture new steel products, diminishing the demand for fresh materials and reducing the environmental impact. Through the utilization of steel formwork, construction sites can greatly diminish their waste generation and contribute to a more sustainable construction industry. This not only benefits the environment but also promotes a more efficient and cost-effective approach to construction.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords