• HR Steel Angle Beams for Structures and for Buildings System 1
  • HR Steel Angle Beams for Structures and for Buildings System 2
  • HR Steel Angle Beams for Structures and for Buildings System 3
HR Steel Angle Beams for Structures and for Buildings

HR Steel Angle Beams for Structures and for Buildings

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering HR Steel Angle Beams for Structures and for Buildings at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

HR Steel Angle Beams for Structures and for Buildings are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

1. Supporting members, most commonly in the house raising industry to strengthen timber bears under houses. Transmission line towers, etc

2. Prefabricated structure

3. Medium scale bridges

4. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

 

Product Advantages:

HR Steel Angle Beams for Structures and for Buildings are durable, strong, and resist corrosion. And all the beams will be produced by steel billets of high quanlity in China with competitive prices.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

Angle Steel

Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25

5. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

6.Material details:

Alloy No

Grade

Element (%)


C

Mn

S

P

Si











Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3










Alloy No

Grade

Yielding strength point( Mpa)


Thickness (mm)


≤16

>16--40

>40--60

>60--100










Q235

B

235

225

215

205


Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)


Thickness (mm)



≤16

>16--40

>40--60

>60--100











Q235

B

375--500

26

25

24

23


FAQ: 

Q1: How do we guarantee the quality of our products?

A1: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q2: How soon can we receive the product after purchase?

A2: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: Can HR Steel Angle Beams for Structures and for Buildings rust?

A4: Maybe there is some little rust on the suface of goods, but it dosen't afect the usage.

HR Steel Angle Beams for Structures and for Buildings

HR Steel Angle Beams for Structures and for Buildings

HR Steel Angle Beams for Structures and for Buildings



Q: Can steel angles be used for pipe supports or hangers?
Pipe supports or hangers can indeed utilize steel angles. These angles offer structural reinforcement and stability to pipes, rendering them appropriate for a wide range of construction and industrial applications. The L-shaped configuration of steel angles enables effortless attachment to walls, ceilings, or other structural components, establishing a robust foundation for suspending or supporting pipes. Moreover, the robustness and resilience of steel angles enable them to withstand the weight and pressure exerted by the pipes, ensuring enduring stability and dependability. In summary, steel angles are frequently employed and prove highly effective as pipe supports and hangers.
Q: How do steel angles contribute to sustainable transportation infrastructure?
There are several ways in which steel angles contribute to sustainable transportation infrastructure. To begin with, steel angles are essential in building bridges and highways. Their strength and durability make them perfect for supporting heavy loads and enduring the harsh conditions that transportation infrastructure faces. Consequently, structures constructed with steel angles have a longer lifespan, reducing the need for frequent repairs or replacements. This not only saves money but also lessens the environmental impact associated with the production and disposal of construction materials. Furthermore, the use of steel angles in the construction of transportation infrastructure allows for more efficient designs. Engineers can create innovative and lightweight structures with the versatility of steel angles, resulting in the requirement of less material overall. This leads to reduced energy consumption during the construction process and decreased emissions during transportation and installation. Moreover, steel angles are recyclable. They can be easily recycled and utilized to manufacture new steel products when they reach the end of their lifespan. This lessens the demand for raw materials and minimizes waste sent to landfills. The recycling process also requires less energy and emits fewer greenhouse gases compared to the production of new steel, making it an environmentally friendly choice. Additionally, steel angles can contribute to sustainable transportation infrastructure by facilitating the integration of sustainable technologies. They can support solar panels or wind turbines, enabling the generation of clean energy to power transportation systems. By incorporating renewable energy sources into infrastructure projects, the reliance on fossil fuels can be reduced, resulting in decreased greenhouse gas emissions and a more sustainable transportation system. In conclusion, steel angles have a crucial role to play in sustainable transportation infrastructure. Their strength, durability, recyclability, and ability to support sustainable technologies make them an environmentally friendly choice. By incorporating steel angles in the construction of bridges, highways, and other transportation structures, we can create a more sustainable and resilient transportation system that reduces the environmental impact and promotes a greener future.
Q: Can steel angles be used in seismic or high-wind areas?
Steel angles can indeed be utilized in areas that experience seismic activity or strong winds. Their strength and durability make them a popular choice in construction. Steel angles serve as a reliable source of structural support and are capable of withstanding seismic forces and high winds, as long as they are designed and installed correctly. It is important to adhere to specific building codes and regulations when using steel angles in these areas. These codes and regulations are in place to guarantee that structures can withstand the forces generated by earthquakes or strong winds. To meet the required safety standards, engineers must consider various factors, such as the appropriate size, configuration, and connection details of the steel angles.
Q: Can steel angles be easily cut to size?
Certainly! Cutting steel angles to size is a breeze. These angles are widely employed in construction and fabrication endeavors, and they come in a range of lengths and sizes. Achieving the desired length is a simple task with tools like a hacksaw, angle grinder, or plasma cutter. Nevertheless, the ease of cutting steel angles hinges on the steel's thickness and hardness. If the angles are thicker and harder, more potent tools and cutting techniques may be necessary. It's crucial to employ proper safety precautions and tools to guarantee precise and flawless cuts when working with steel angles.
Q: How do steel angles perform in terms of water resistance or waterproofing?
Steel angles typically lack inherent water resistance or waterproofing properties, as they are composed of metal and thus prone to corrosion and rust when exposed to water or moisture over extended periods. Nevertheless, there are various means by which the water resistance or waterproofing of steel angles may be enhanced. One prevalent approach involves the application of a protective coating, such as galvanization or painting, onto the steel angles. Galvanization entails the application of a zinc layer to the steel, which serves as a barrier against water and inhibits corrosion. Conversely, painting creates a protective layer that seals out moisture and prevents direct contact between the steel and water. Moreover, the water resistance of steel angles can be bolstered through appropriate design and installation techniques. For instance, ensuring adequate drainage and averting water accumulation on or around the steel angles can prevent prolonged exposure to moisture, thereby diminishing the risk of corrosion. It is crucial to acknowledge that despite the aforementioned measures, steel angles may still be susceptible to water damage if the protective coatings are compromised or if constant exposure to harsh environmental conditions persists. Consequently, routine inspection, maintenance, and timely repair or reapplication of protective coatings are indispensable for ensuring enduring water resistance.
Q: I would like to ask you, angle iron, what does it usually use ah?
The angle iron can be made up of different force components according to the different structure, and can also be used as the connecting piece between the components. Widely used in a variety of architectural and engineering structures, such as beams, bridges, towers, hoisting and conveying machinery, ships, industrial furnace, reaction tower, container frame and warehouse
Q: What are steel angles?
Construction and engineering projects often utilize steel angles, which are a type of steel structural shape. These angles are L-shaped beams with legs of either equal or unequal length, forming a 90-degree angle. Typically made from hot-rolled steel, they can be found in a variety of sizes and thicknesses. Steel angles offer versatility and have many uses. They are commonly employed as framing elements in buildings and bridges, providing necessary support and stability. In addition, they can serve as reinforcement in concrete structures or as brackets and supports for equipment and machinery. One of the significant advantages of steel angles is their strength and durability. They are designed to withstand heavy loads and maintain structural integrity. Furthermore, steel angles are resistant to corrosion, making them suitable for outdoor applications and environments with high levels of moisture or chemical exposure. Steel angles are available in different grades, each with its own mechanical properties and characteristics. This allows engineers and designers to select the most suitable angle for a given project's requirements. In conclusion, steel angles are crucial components in construction and engineering. They offer strength, stability, and versatility across a wide range of applications. Whether providing structural support or reinforcement, steel angles play a vital role in ensuring the integrity and safety of various structures.
Q: What are the disadvantages of using steel angles?
There are several disadvantages of using steel angles in various applications. One of the main disadvantages is their susceptibility to corrosion. Steel angles are typically made from carbon steel, which is prone to rusting when exposed to moisture and harsh environmental conditions. This can lead to structural weakening and reduced durability over time. Another disadvantage is their weight and bulkiness. Steel angles are often heavy and bulky, making them difficult to handle and transport. This can increase the overall cost of the project, as special equipment or additional labor may be required for installation. Steel angles also have limited flexibility and versatility in terms of design. They are typically available in standard sizes and shapes, which can restrict their use in certain applications that require custom or intricate designs. This lack of flexibility may result in additional costs for fabrication or the need for alternative materials. Additionally, steel angles can be more expensive compared to other materials such as aluminum or wood. This can make them less cost-effective in certain projects, especially in situations where the structural requirements can be met with alternative materials that are more affordable. Lastly, steel angles can conduct heat and electricity, which may not be desirable in certain applications. This can pose safety risks in electrical or heat-sensitive environments, requiring additional insulation or protective measures. Overall, while steel angles offer several advantages such as high strength and durability, their disadvantages include susceptibility to corrosion, weight and bulkiness, limited flexibility in design, higher cost, and conductivity of heat and electricity. These factors should be carefully considered when deciding whether to use steel angles in a particular project.
Q: Can steel angles support heavy loads?
Steel angles have the ability to bear heavy loads. These L-shaped metal bars, known as steel angles, are frequently employed in construction and engineering for their sturdy and long-lasting nature. The unique design of steel angles enables them to evenly distribute weight, rendering them capable of enduring substantial loads. They are commonly utilized as structural supports and reinforcement in a variety of structures, including buildings, bridges, and machinery. Furthermore, engineers can tailor the dimensions and thickness of steel angles to meet precise load demands, making them a dependable option for supporting heavy loads.
Q: How do steel angles perform under static or stationary loading conditions?
Steel angles are commonly used in construction and engineering applications due to their strength and versatility. Under static or stationary loading conditions, steel angles exhibit excellent performance and stability. Static loading refers to a situation where a load is applied to the angle and remains constant without any motion. Steel angles are specifically designed to withstand such loading conditions. Due to their structural properties, steel angles have a high resistance to bending and twisting forces. This allows them to effectively support heavy loads without experiencing significant deformation or failure. Steel angles distribute the applied load evenly along their length, which helps to minimize stress concentrations. This property ensures that the angle can efficiently transfer the load to the supporting structure, providing stability and structural integrity. Additionally, steel angles can withstand compressive forces, which try to shorten or compress the material. The shape and cross-section of steel angles, specifically their L-shaped profile, contribute to their ability to resist compressive loading. This feature makes steel angles suitable for applications where static loads exert compressive forces, such as columns, beams, and bracing elements. Moreover, steel angles have a high resistance to shear forces, which occur when two or more parts of a structure slide or move in opposite directions. The design of steel angles, with their perpendicular legs, enhances their shear strength, allowing them to effectively resist shear loading under stationary conditions. In summary, steel angles perform exceptionally well under static or stationary loading conditions. Their structural properties, such as resistance to bending, twisting, compression, and shear forces, make them suitable for a wide range of applications in construction and engineering.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords