• Spring Steel Flat Bar System 1
  • Spring Steel Flat Bar System 2
  • Spring Steel Flat Bar System 3
Spring Steel Flat Bar

Spring Steel Flat Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering high quality Steel Flat Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Flat Bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Flat Bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Commodity: Mild Steel Flat Bar

Standard: GB;JIS

Material: Q195-235;SS400

Origin place: China

Thickness: 3mm-30mm

Width:20mm-200mm

Length: Max 12m

Certification: SGS/BV

 

 



Usage/Applications of Steel Flat Bar

Widely used for construction, Machinery manufacturing, Iron tower steel structure, Shipbuilding; Steel grating, Staircase, Bridge, Viaduct, Railway spare parts, Boilers making etc.

Packaging & Delivery of Mild Steel Flat Bar

Packaging Details: The Mild Steel Flat Bars are packed in bundles and loaded in 20 feet/40 feet container, or shipped by bulk cargo ,also we can do as customer's requirements.

Delivery Details:30~45 days upon the receipt of buyer payment by T.T. or L/C.

Production Flow of Steel Flat Bar

The Mild steel flat bar is made through three processes:

1.Feeding the material: Feeding the row material (the steel plate) to Slitting Line.

2.Slitting:The steel plate would be slitted into expected width by lengthways cutter.

3. Leveled and cutting: The plat bar would be ground into level by the grinder and then cut into required length

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q: What are the specific requirements for special steel used in the railway wheel industry?
The specific requirements for special steel used in the railway wheel industry include high strength, durability, and resistance to wear and fatigue. The steel must have excellent mechanical properties to withstand heavy loads and impact forces. It should also have good heat treatment characteristics to ensure proper hardness and toughness. Additionally, the steel must meet strict dimensional and geometrical specifications to ensure compatibility with the railway system.
Q: What are the factors that determine the cost of special steel?
The cost of special steel is determined by several factors, including the type and grade of steel, the manufacturing process involved, the quantity and availability of raw materials, market demand and competition, transportation and logistics costs, and any additional customization or special specifications required by the customer.
Q: What are the different techniques used for joining special steel?
Some of the different techniques used for joining special steel include welding, brazing, soldering, and adhesive bonding. Each technique has its own advantages and considerations depending on the specific application and properties of the steel being joined. Welding involves melting and fusing the steel together, while brazing and soldering use a lower temperature to join the steel with a filler material. Adhesive bonding uses a strong adhesive to bond the steel surfaces together. The choice of technique depends on factors such as the strength required, the materials being joined, and the desired properties of the final joint.
Q: How does special steel perform in low-temperature environments?
Special steel, also known as low-temperature steel, is specifically designed to perform exceptionally well in low-temperature environments. One of the key features of special steel is its ability to maintain its strength and toughness even at extremely low temperatures. This is crucial in industries such as oil and gas, where equipment and structures are exposed to extreme cold conditions. When exposed to low temperatures, regular steel tends to become brittle and lose its mechanical properties, making it prone to cracking and failure. However, special steel is formulated with specific alloying elements, such as nickel, chromium, and molybdenum, which enhance its low-temperature performance. These alloying elements help to prevent the formation of brittle phases, which allows the steel to retain its toughness and ductility even at sub-zero temperatures. Special steel is extensively used in cryogenic applications, where temperatures can reach as low as -196 degrees Celsius (-320 degrees Fahrenheit). It is commonly employed in the construction of cryogenic storage tanks, liquefied natural gas (LNG) carriers, and other components that come into contact with extremely cold fluids or gases. In low-temperature environments, special steel not only maintains its mechanical properties but also exhibits excellent resistance to corrosion. This is vital, as low temperatures can exacerbate corrosion issues in many materials. The corrosion resistance of special steel is attributed to its high nickel content, which forms a protective oxide layer that prevents the steel from corroding, even in harsh conditions. Overall, special steel is specifically engineered to withstand the challenges posed by low-temperature environments. Its ability to retain strength, toughness, and corrosion resistance makes it an ideal choice for various industries operating in extreme cold conditions.
Q: How does special steel contribute to the energy equipment industry?
Special steel plays a crucial role in the energy equipment industry by providing the necessary strength, durability, and resistance to extreme conditions. The energy equipment industry encompasses various sectors such as oil and gas, renewable energy, power generation, and transmission, all of which rely heavily on special steel for their infrastructure and machinery. In the oil and gas sector, special steel is used in the construction of pipelines, drilling equipment, and storage tanks. The unique properties of special steel, such as high tensile strength, corrosion resistance, and the ability to withstand high pressure and temperature, make it an ideal material for these applications. Special steel also ensures the safety and reliability of oil and gas operations, as it can withstand harsh environments, including corrosive substances and extreme weather conditions. In the renewable energy sector, special steel is used in the manufacturing of wind turbines, solar panels, and hydroelectric power systems. These energy sources require strong and lightweight materials that can withstand constant exposure to nature's elements. Special steel alloys, such as high-strength low-alloy (HSLA) steel and stainless steel, are commonly used to construct the infrastructure of renewable energy systems, ensuring their longevity and efficiency. Furthermore, special steel is essential in power generation and transmission equipment. It is utilized in the manufacturing of gas turbines, steam turbines, and generators. Special steel alloys can endure the high temperatures and pressures generated during power generation processes, ensuring the efficiency and reliability of energy production. Additionally, special steel is used in the transmission infrastructure, including transmission towers and power cables, to support the efficient and safe transfer of electricity over long distances. Overall, special steel contributes significantly to the energy equipment industry by providing the necessary strength, durability, and resistance to extreme conditions. It enables the construction of reliable and efficient infrastructure, ensuring the smooth operation of energy systems, whether in oil and gas, renewable energy, or power generation and transmission.
Q: How does special steel compare to other materials like aluminum or titanium?
Special steel, such as stainless steel or tool steel, offers unique properties that make it highly desirable for certain applications. Compared to materials like aluminum or titanium, special steel is generally stronger, more durable, and has better resistance to corrosion. It also often provides better heat resistance and can be easily machined or welded. However, aluminum and titanium have their own advantages such as being lighter in weight and having higher strength-to-weight ratios. The choice of material depends on the specific requirements of the application.
Q: How does special steel contribute to the defense machinery industry?
Special steel plays a crucial role in the defense machinery industry by offering a range of benefits and contributing to the overall performance and durability of various defense equipment. Firstly, special steel possesses exceptional strength and toughness, making it suitable for manufacturing critical components such as armor plates, ballistic missiles, submarines, and tanks. These components require high resistance to impact, penetration, and extreme conditions, which special steel can provide, ensuring the safety and protection of military personnel and assets. Additionally, special steel offers excellent corrosion resistance, a vital characteristic for defense machinery used in harsh environments such as maritime operations or combat zones. Corrosion can weaken structures and compromise the functionality of equipment, but special steel's resistance helps maintain the integrity and longevity of defense machinery, reducing maintenance costs and increasing operational readiness. Furthermore, special steel enables the production of precision components with high dimensional stability, essential for advanced defense systems like aircraft, missiles, and radars. These components require exceptional accuracy and reliability to function optimally, and special steel's uniformity and consistency meet these demands, ensuring precise performance and enhancing the overall capabilities of defense machinery. Moreover, special steel also contributes to weight reduction in defense machinery. As military equipment becomes more complex and technologically advanced, reducing weight while maintaining strength is crucial for enhancing mobility, fuel efficiency, and overall operational effectiveness. Special steel's high strength-to-weight ratio allows for the development of lighter defense machinery without compromising on durability or protection. In summary, special steel's exceptional strength, corrosion resistance, dimensional stability, and weight reduction properties make it an indispensable material in the defense machinery industry. It enables the production of robust and reliable equipment, ensuring the safety and effectiveness of military operations and enhancing the overall capabilities of defense forces.
Q: How does special steel contribute to reducing product costs?
Special steel contributes to reducing product costs in several ways. Firstly, special steel is known for its high strength and durability, which allows manufacturers to design and produce products that have a longer lifespan. This reduces the need for frequent replacements or repairs, thus saving costs in the long run. Additionally, special steel can be customized to meet specific requirements, allowing for the production of lighter and more efficient products. This can lead to savings in terms of raw material usage, transportation costs, and energy consumption. Moreover, special steel often has excellent corrosion resistance, reducing the need for additional protective coatings or maintenance, which can also result in cost savings. Overall, the utilization of special steel in manufacturing processes helps optimize product performance, longevity, and efficiency, thereby contributing to reducing product costs.
Q: Can special steel be welded?
Yes, special steel can be welded.
Q: What are the different methods for case hardening special steel?
Case hardening special steel can be achieved through various methods, each with its own set of advantages and applications. 1. Carburizing: By subjecting the steel to high temperatures within a carbon-rich environment, a durable and resistant outer layer is formed as carbon atoms diffuse into the surface. Gas carburizing, pack carburizing, or liquid carburizing are some techniques employed for this process. 2. Nitriding: Steels with high alloy content benefit from nitriding, wherein the steel is heated in an environment abundant in nitrogen. This leads to the formation of a tough and corrosion-resistant layer as nitrogen atoms penetrate the surface. 3. Induction hardening: Through induction heating, the surface of the steel is selectively heated, followed by a rapid quenching process. This results in a hardened layer suitable for localized hardening requirements, such as gears or shafts. 4. Flame hardening: Large parts or components that are challenging to treat with other methods can be effectively hardened through the application of a high-temperature flame to the steel surface, followed by rapid cooling. 5. Laser hardening: Achieving precision and localized hardening, laser hardening involves the use of a laser beam to heat and harden specific areas of the steel. This method allows for precise control over the depth and hardness of the hardened layer. The selection of a case hardening method depends on various factors, including the desired hardness, the size and shape of the part, and the specific requirements of the application. Each method possesses its own advantages and limitations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords