• Special Steel W6 High Speed Tool Steel Round Bar System 1
  • Special Steel W6 High Speed Tool Steel Round Bar System 2
Special Steel W6 High Speed Tool Steel Round Bar

Special Steel W6 High Speed Tool Steel Round Bar

Ref Price:
$300.00 - 500.00 / m.t. get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product information

 

Chemical Composition(GB)%

StandardCSiMnPSCrWMoV
W6Mo5Cr4V20.55-0.65≤0.40≤0.60≤0.030≤0.0203.70-4.306.00-7.004.50-5.501.70-1.10
M20.78-0.880.20-0.450.15-0.40≤0.030≤0.0303.75-4.505.50-6.754.50-5.501.75-2.20

 

Heat Treatment

ItemTemperature℃Hardness
Anneal840-860≤255HB
Quenching1150-1180≥60HRC
Tempering560-580≥60HRC

  

Applications:Used for various tools,large thermoplastic forming cutting tools,abrasion resistance components operating under high load such as cold extrusion dies

Product show

.jpg

Workshop show

Special Steel W6 High Speed Tool Steel Round Bar

Q: What are the properties of carbon steel?
Carbon steel is a type of steel that primarily consists of iron and carbon, with trace amounts of other elements. It is known for its strength, durability, and high melting point. Carbon steel is also highly malleable, making it easy to form into various shapes and structures. Additionally, it exhibits good corrosion resistance, although it is not as resistant as stainless steel. Overall, carbon steel is widely used in industries such as construction, automotive, and manufacturing due to its excellent mechanical properties.
Q: Can special steel be used in the nuclear power industry?
Yes, special steel can be used in the nuclear power industry. Special steel, such as stainless steel or alloy steel, is often used for various components in nuclear power plants due to its high strength, corrosion resistance, and ability to withstand high temperatures and radiation. These steels are utilized in reactor vessels, steam generators, piping systems, and other critical structures to ensure the safety and reliability of nuclear power plants.
Q: What are the different techniques used for joining special steel?
Some of the different techniques used for joining special steel include welding, brazing, soldering, and mechanical fastening. Welding involves melting the surfaces of the steel pieces to be joined and fusing them together. Brazing and soldering involve using a filler material that melts at a lower temperature than the steel to join the pieces together. Mechanical fastening techniques, such as bolts, screws, or rivets, can also be used to join special steel components together.
Q: What are the properties of high-strength tool steel?
High-strength tool steel possesses excellent hardness, wear resistance, and toughness. It has the ability to retain its sharpness, withstand high temperatures, and resist deformation. This type of steel is also known for its high strength-to-weight ratio, making it ideal for heavy-duty applications in industries such as manufacturing and construction.
Q: What are the different casting techniques used for special steel?
There are several casting techniques used for special steel, including investment casting, continuous casting, sand casting, and centrifugal casting. These techniques allow for the production of complex shapes, improved surface finish, and precise control over the metallurgical properties of the steel. Each technique has its advantages and is used depending on the specific requirements of the final product.
Q: How does special steel contribute to the construction of infrastructure projects?
Enhanced strength, durability, and versatility are crucial attributes of special steel that play a vital role in the construction of infrastructure projects. Specifically tailored to meet the unique demands and challenges posed by these projects, special steel is an indispensable component for their successful completion. One of the ways in which special steel contributes to infrastructure projects is through its exceptional strength. Bridges, tunnels, and high-rise buildings, among others, require materials that can endure heavy loads and harsh environmental conditions. Special steel possesses high tensile and yield strength, enabling it to bear significant loads without experiencing deformation or failure. This strength ensures the structural integrity and safety of the infrastructure, providing reassurance to engineers, architects, and the general public. Durability is another key aspect that special steel brings to infrastructure projects. These projects often face exposure to various environmental factors, including extreme temperatures, moisture, and corrosive elements. Special steel is specifically designed to resist corrosion, oxidation, and degradation, making it highly durable and capable of withstanding challenging conditions. Its long lifespan reduces maintenance and replacement costs, making it a cost-effective choice for infrastructure projects. Versatility is yet another advantage of special steel in the realm of infrastructure construction. It can be customized and fabricated into different shapes and sizes to match the specific requirements of diverse projects. Whether used for beams, columns, or reinforcements, special steel offers flexibility in design and construction. This adaptability empowers engineers and architects to create innovative and efficient infrastructure designs, optimizing space and resources. Moreover, special steel contributes to the sustainability of infrastructure projects. Its recyclability and eco-friendly nature make it an environmentally responsible choice. Steel can be recycled without compromising its properties, reducing the need for new raw materials and minimizing waste. This sustainable approach aligns with the growing emphasis on eco-friendly construction practices, positioning special steel as an ideal material for infrastructure projects. In conclusion, through its superior strength, durability, versatility, and sustainability, special steel significantly contributes to the construction of infrastructure projects. Its ability to withstand heavy loads, harsh environmental conditions, and provide long-lasting performance ensures the safety and reliability of infrastructure. Additionally, its flexibility in design and construction allows for innovative and efficient project execution. With these advantages, special steel remains an essential component in the development of robust and sustainable infrastructure.
Q: What is the impact of impurities on the properties of special steel?
Impurities in special steel can have a significant impact on its properties. These impurities can affect the steel's strength, toughness, corrosion resistance, and overall performance. For instance, excessive levels of impurities like sulfur and phosphorus can reduce the steel's ductility and make it more prone to cracking. Similarly, high amounts of carbon impurities can affect the steel's hardness and make it more brittle. Therefore, controlling and minimizing impurities is crucial in ensuring that special steel meets the desired quality and performance requirements.
Q: What are the different methods of preventing galvanic corrosion in special steel?
There are multiple approaches to prevent galvanic corrosion in special steel: 1. Application of a protective coating acts as a barrier, preventing direct contact between the steel and the corrosive environment. Various types of coatings, including paints, epoxy, or polyurethane, can be used for this purpose. 2. Cathodic protection involves making the steel the cathode in a galvanic cell, effectively preventing corrosion. Two techniques can be employed: sacrificial anode cathodic protection and impressed current cathodic protection. In sacrificial anode cathodic protection, a more reactive metal like zinc or magnesium is connected to the steel, sacrificing itself to protect the steel. Impressed current cathodic protection, on the other hand, involves applying a low-level direct current to the steel, inhibiting the formation of galvanic cells. 3. Isolation of the special steel from other more reactive metals can prevent galvanic corrosion. Insulating materials like plastic or rubber can be used to physically separate the steel from other metals. 4. Adding specific alloying elements to the special steel enhances its resistance to galvanic corrosion. For instance, chromium can be added to form a passive oxide layer on the steel's surface, acting as a protective barrier. 5. Proper design and engineering considerations can also play a role in preventing galvanic corrosion. For instance, avoiding the use of dissimilar metals in close proximity can minimize the risk of galvanic corrosion. Additionally, designing structures to facilitate proper drainage and ventilation prevents moisture accumulation, which can accelerate galvanic corrosion. It is crucial to consider various factors, such as the specific environment, cost considerations, and desired lifespan of the steel, when selecting the most suitable method for preventing galvanic corrosion in special steel.
Q: What are the properties of electrical steel?
Electrical steel, also known as silicon steel, possesses several important properties that make it suitable for various electrical applications. It has a high magnetic permeability, which means it can efficiently conduct magnetic flux, making it ideal for use in transformers, motors, and generators. Additionally, electrical steel exhibits low core losses, reducing energy dissipation during operation. Its high electrical resistivity minimizes eddy currents, further improving efficiency. Furthermore, electrical steel has a laminated structure, reducing hysteresis losses and preventing magnetic domains from aligning, which helps in maintaining a stable magnetic field. Overall, electrical steel's properties make it a crucial material for efficient and reliable electrical devices.
Q: What are the different surface hardening grades of special steel?
There are several different surface hardening grades of special steel, each designed to provide specific characteristics and properties. Some of the commonly used grades include: 1. Case-hardening steels: These grades are typically low carbon steels that are designed to develop a hard outer layer, or case, while maintaining a softer core. This is achieved through processes like carburizing or nitriding, which introduce carbon or nitrogen into the surface of the steel. Case-hardening steels are often used in applications where wear resistance and toughness are required. 2. Tool steels: These grades are specifically designed for use in cutting, forming, and shaping tools. Tool steels are known for their high hardness, resistance to wear, and ability to retain their cutting edge even at elevated temperatures. Various types of tool steels are available, such as high-speed steel (HSS), hot work steel, cold work steel, and plastic mold steel, each suitable for specific applications. 3. Stainless steels: These grades of special steel contain a minimum of 10.5% chromium, which provides excellent corrosion resistance. Stainless steels can be hardened through processes like precipitation hardening or martensitic transformation. They are commonly used in industries such as food processing, chemical, and medical, where resistance to corrosion and high temperatures are crucial. 4. High-strength steels: These grades are designed to provide exceptional strength and toughness. They often contain alloying elements like manganese, chromium, or nickel to enhance their mechanical properties. High-strength steels are commonly used in structural applications, automotive components, and heavy machinery. 5. Maraging steels: These grades of special steel are known for their high strength, toughness, and excellent resistance to fracture. Maraging steels achieve their properties through a unique aging process, which involves a precipitation-hardening treatment. They find applications in aerospace, defense, and tooling industries. 6. Bearing steels: These grades are specifically formulated to provide excellent wear resistance and durability for use in bearing applications. Bearing steels often contain alloying elements like chromium, molybdenum, and vanadium to enhance their mechanical properties and resistance to fatigue. These are just a few examples of the different surface hardening grades of special steel. Each grade offers unique properties and characteristics, allowing for a wide range of applications in various industries.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords