• Special Steel Round Bar for Bearing System 1
  • Special Steel Round Bar for Bearing System 2
  • Special Steel Round Bar for Bearing System 3
Special Steel Round Bar for Bearing

Special Steel Round Bar for Bearing

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Bearing steel at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Bearing steel is used for manufacturing ball, roller bearing steel and rings. Bearing in work is under great pressure and friction, so have high demands bearing steel and hardness and resistance, and high elastic limit.

Bearing steels are used for ball and roller bearing applications and are comprised of low carbon steels and high carbon through harden able steel.

For example, bearing ring, steel rolling mill, machinery, 100Cr6 bearing steel ball is widely used in high-speed and low-noise bearing, bicycle, motorcycle, automobile, bags electronically.

 

Product Advantages:

OKorder's Bearing steel are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Grade

bearing steel EN-31

Dimensions

Diameter: 20-280mm

Length: 2000-5800mm

Shape

Round Bar

Type

High chromium bearing steel

HBS

<220

Standard

AISI

Technique

Hot Rolled


FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

 

Images:

 


Q: How is case-hardening steel used in the production of gears and camshafts?
Case-hardening steel is used in the production of gears and camshafts to enhance their surface hardness and wear resistance. The process involves heating the steel at a high temperature and then rapidly cooling it, creating a hardened outer layer while maintaining a tough core. This hard outer layer allows gears and camshafts to withstand the high stresses and wear they experience during operation, increasing their durability and lifespan.
Q: What are the future prospects for the special steel industry?
The future prospects for the special steel industry are promising. With the increasing demand for high-performance and durable materials in various sectors such as automotive, aerospace, construction, and energy, the special steel industry is expected to witness steady growth. Additionally, advancements in technology and innovation are likely to drive the development of new and improved special steel alloys, further boosting the industry's prospects. Furthermore, the growing emphasis on sustainability and environmental regulations may create opportunities for the special steel industry to develop eco-friendly solutions. Overall, the special steel industry is well-positioned for a prosperous future.
Q: What are the different grades of special steel?
There are various grades of special steel, including stainless steel grades such as 304, 316, and 410, tool steel grades like D2, A2, and M2, and high-speed steel grades such as M42 and T15. Each grade has unique properties and applications, making them suitable for specific purposes in industries like construction, automotive, and manufacturing.
Q: What are the main advantages of using special steel in the oil and gas industry?
The main advantages of using special steel in the oil and gas industry include its high strength, corrosion resistance, and ability to withstand extreme temperatures and pressures. Special steel is specifically designed and manufactured to meet the demanding requirements of the industry, ensuring reliable performance and longevity. It also offers excellent weldability, which is crucial for constructing pipelines and equipment used in oil and gas operations. Additionally, special steel's durability and resistance to fatigue make it ideal for withstanding the harsh conditions and environments encountered in the oil and gas sector.
Q: What are the different methods of testing the quality of special steel?
There are several methods used to test the quality of special steel. 1. Chemical Analysis: This method involves analyzing the composition of the steel to ensure it meets the required chemical specifications. It helps determine the presence and quantity of various elements, such as carbon, manganese, chromium, nickel, and others, which are crucial for achieving specific mechanical properties. 2. Mechanical Testing: Mechanical testing is performed to evaluate the strength, hardness, ductility, and other mechanical properties of special steel. Common tests include tensile testing, which measures the steel's resistance to breaking under tension, and hardness testing, which determines its resistance to indentation or scratching. 3. Non-Destructive Testing (NDT): NDT methods are employed to assess the quality of steel without causing damage. Techniques such as ultrasonic testing, magnetic particle testing, and liquid penetrant testing are used to detect surface and internal defects, cracks, or discontinuities that may affect the steel's integrity. 4. Microscopic Examination: Microscopy is used to examine the microstructure of special steel, allowing for the evaluation of grain size, inclusions, and other structural features. This analysis can provide insights into the steel's properties and potential defects. 5. Corrosion Testing: Special steel often needs to resist corrosion in harsh environments. Various corrosion tests, such as salt spray testing, electrochemical methods, and exposure to corrosive substances, are conducted to assess the steel's resistance to corrosion and determine its suitability for specific applications. 6. Impact Testing: This method involves subjecting the steel to a high-energy impact to assess its toughness and resistance to sudden loading. It helps determine if the steel can withstand sudden shocks or impacts without fracturing. 7. Heat Treatment Analysis: Special steel often undergoes heat treatment processes to enhance its properties. Heat treatment analysis involves examining the microstructure and hardness of the steel after the treatment to ensure it has achieved the desired properties. Overall, the combination of these testing methods helps ensure that special steel meets the required quality standards, ensuring its suitability for various applications, such as construction, automotive, aerospace, and industrial equipment.
Q: How does aluminum contribute to the properties of special steel?
Aluminum is commonly added as an alloying element in special steel to enhance its properties. By adding aluminum to steel, several improvements can be achieved. Firstly, aluminum improves the strength of steel by forming a fine dispersion of aluminum nitride particles within the steel matrix. These particles act as barriers to dislocation movement, impeding the deformation of the steel and increasing its strength. This makes the steel more resistant to mechanical stresses and enhances its load-bearing capacity. Secondly, aluminum also enhances the corrosion resistance of steel. It forms a protective oxide layer on the surface of the steel, acting as a barrier against the corrosive agents. This oxide layer prevents the steel from oxidizing, rusting, and deteriorating over time, making it more durable and long-lasting in various environments. Additionally, aluminum can improve the machinability of special steel. Its presence in the steel composition reduces the tendency of the steel to work harden during machining operations. This makes it easier to cut, drill, or shape the steel, resulting in improved productivity and reduced tool wear. Moreover, aluminum contributes to the heat resistance of special steel. It has a high melting point and good thermal conductivity, which helps in maintaining the structural integrity of the steel at elevated temperatures. This makes aluminum-steel alloys suitable for applications where high-temperature resistance is required, such as in the aerospace and automotive industries. In summary, aluminum contributes significantly to the properties of special steel. It enhances the strength, corrosion resistance, machinability, and heat resistance of steel, making it a versatile material with a wide range of applications.
Q: How is carbon steel used in the manufacturing of pipes and tubes?
Carbon steel is commonly used in the manufacturing of pipes and tubes due to its high strength, durability, and affordability. Its composition, which includes mainly iron and carbon, provides it with excellent mechanical properties and resistance to corrosion. Carbon steel pipes and tubes are widely used in various industries, including oil and gas, construction, and manufacturing, for conveying fluids, gases, and solids. Its versatility and reliability make it a popular choice for a wide range of applications.
Q: What are the different methods of heat treatment for special steel?
There are several different methods of heat treatment for special steel, each designed to enhance specific properties of the steel. These methods include: 1. Annealing: This method involves heating the steel to a specific temperature and then slowly cooling it, typically in a controlled atmosphere. Annealing helps to relieve internal stresses, improve machinability, and soften the steel for further processing. 2. Normalizing: Normalizing is a heat treatment process that involves heating the steel to a temperature above its critical temperature and then air cooling it in still air. This method is commonly used to refine the grain structure of the steel, improve its mechanical properties, and enhance its strength and toughness. 3. Quenching: Quenching is a method that involves rapidly cooling the steel from a high temperature by immersing it in a quenching medium such as oil, water, or brine. This process results in the formation of a very hard and brittle structure known as martensite, which increases the steel's hardness and wear resistance. 4. Tempering: Tempering is performed after quenching and involves reheating the steel to a specific temperature and holding it there for a certain period of time, followed by air cooling. This process helps to reduce the brittleness of the steel caused by quenching and improves its toughness, ductility, and impact resistance. 5. Austempering: Austempering is a heat treatment method that involves quenching the steel from a high temperature and then holding it at a specific temperature for a prolonged period of time. This process produces a structure called bainite, which provides a combination of strength, toughness, and ductility. 6. Martempering: Martempering is a variation of quenching that involves cooling the steel to a temperature just above its martensitic transformation range and then holding it at that temperature until it becomes uniformly cooled. This method reduces the risk of distortion and cracking compared to traditional quenching and provides improved toughness and dimensional stability. 7. Induction hardening: Induction hardening is a surface heat treatment method used to selectively harden specific areas of the steel. It involves heating the surface of the steel using induction heating and then rapidly quenching it. This process results in a hardened surface layer while maintaining the toughness and ductility of the core. These different methods of heat treatment for special steel provide a range of options to optimize the desired properties of the steel, depending on the specific application and requirements.
Q: What are the different types of spring steel?
There are several different types of spring steel, including high carbon spring steel, stainless steel, alloy steel, and piano wire.
Q: What are the properties of high-strength steel?
High-strength steel possesses a range of properties that make it desirable for various applications. It is known for its exceptional strength-to-weight ratio, allowing for lighter and more efficient structures. Additionally, high-strength steel offers excellent durability, toughness, and resistance to fatigue, making it suitable for withstanding heavy loads and extreme conditions. Moreover, this type of steel exhibits good weldability and formability, allowing for ease of fabrication. Overall, the properties of high-strength steel enable it to provide enhanced performance, structural integrity, and cost-effectiveness in a wide array of industries.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords