Special Steel S45C Carbon Structural Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product Information
1. Grade Comparison
GB | ASTM | JIS | DIN |
45# | SAE1045 | S45C | C45 |
2. Chemical Composition
Grade | C | Si | Mn | P | S | Cr | Cu | Ni |
45# | 0.42-0.50 | 0.17-0.37 | 0.50-0.80 | ≤0.035 | ≤0.035 | ≤0.25 | ≤0.25 | ≤0.30 |
S45C | 0.42-0.48 | 0.15-0.35 | 0.60-0.90 | ≤0.030 | ≤0.035 | - | ≤0.30 | ≤0.20 |
C45 | 0.42-0.50 | ≤0.40 | 0.50-0.80 | ≤0.045 | ≤0.045 | ≤0.40 | - | ≤0.40 |
1045 | 0.43-0.50 | 0.15-0.35 | 0.60-0.90 | ≤0.040 | ≤0.050 | - | - | - |
3. Brief Introduction:
Dimension | 13-350mm |
Length | 2-13m or as per your request |
Delivery condition | Hot rolled |
Heat Treatment | Normalizing, Annealing, Quenching |
Packing | Standard seaworthy packing or according to your requirements |
4. Application:
1) Can be used in many fields such as building, automobile, shipbuilding,
petrochemical, machinery, medicine, food, electric power, energy, space and decoration, etc.
2) Can be made into mould template, mortise pin, column
3) This kind of steel have good mechanical property, is widely used in structural parts
4) which may support stress alternation, especially made into some connecting
rods, bolts, wheel gear...
5) This kind of steel is the most common blanks and materials of shaft part
Product Show
Workshop Show
Shipping
1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;
2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;
3. Customers specifying freight forwarders or negotiable shipping methods!
Delivery Time: 3-7 days for samples; 5-25 days for batch goods.
Payment Terms
1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.
2.MOQ: 1pcs
3.Warranty : 3 years
4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)
2)as customer's requirement
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q: How does special steel perform in extreme heat conditions?
- Special steel performs exceptionally well in extreme heat conditions. It has excellent heat resistance properties, enabling it to maintain its strength and structural integrity even at high temperatures. This makes it highly suitable for applications that involve exposure to extreme heat, such as in industrial furnaces, jet engines, and power plants. Its ability to resist thermal deformation and retain its mechanical properties ensures optimal performance and safety in such demanding environments.
- Q: Can special steel be used in the transportation industry?
- Yes, special steel can be used in the transportation industry. Special steel alloys, such as stainless steel and high-strength steel, offer superior strength, corrosion resistance, and durability, making them suitable for various applications in transportation. These steels are commonly used in the production of automotive components, aircraft parts, railway infrastructure, and ships, enhancing safety and performance in the transportation sector.
- Q: Can special steel be used for making aerospace engine components?
- Yes, special steel can be used for making aerospace engine components. Special steel alloys, such as stainless steel and nickel-based alloys, are often utilized in the aerospace industry due to their high strength, corrosion resistance, and ability to withstand extreme temperatures and pressures. These properties make special steel an ideal choice for critical engine parts like turbine blades, heat exchangers, and exhaust systems, ensuring optimal performance and safety in aerospace applications.
- Q: Can special steel be used for making mining equipment?
- Yes, special steel can be used for making mining equipment. Special steel, such as high-strength and wear-resistant alloys, is commonly utilized in the manufacturing of mining equipment due to its durability and ability to withstand harsh mining conditions. It offers superior resistance to abrasion, impact, and corrosion, making it suitable for applications like excavators, drill bits, crushers, and other machinery used in the mining industry.
- Q: What are the different forming techniques used for special steel?
- Some of the different forming techniques used for special steel include hot forging, cold forging, extrusion, rolling, and casting.
- Q: What are the different methods of surface carburizing for special steel?
- Surface carburizing is a heat treatment process used to increase the carbon content at the surface of steel, resulting in a hardened outer layer. There are several methods of surface carburizing for special steel, each with its own advantages and disadvantages. 1. Gas Carburizing: This method involves exposing the steel to a carbon-rich gas, such as methane or propane, at elevated temperatures. The gas reacts with the steel surface, depositing carbon and forming a hardened layer. Gas carburizing is a widely used method due to its versatility, controllability, and ability to produce uniform and deep case depths. However, it requires specialized equipment and longer processing times. 2. Pack Carburizing: In this method, the steel is packed in a container with a carbon-rich material, such as charcoal or carbon powder. The container is then heated to high temperatures, allowing carbon to diffuse into the steel surface. Pack carburizing is a cost-effective method, but it is relatively slower and less controllable compared to gas carburizing. 3. Liquid Carburizing: Also known as cyaniding, this method involves immersing the steel in a liquid bath containing a carbon-rich compound, such as sodium cyanide. The bath is heated to high temperatures, which enables carbon diffusion into the surface of the steel. Liquid carburizing is a fast and cost-effective method, but it requires careful handling of toxic chemicals and may result in lower case depths compared to other methods. 4. Plasma Carburizing: This method utilizes a plasma discharge to provide a carbon-rich atmosphere around the steel surface. The plasma contains hydrocarbons, which dissociate into carbon atoms that diffuse into the steel. Plasma carburizing offers precise control over case depth and can achieve high surface hardness. However, it requires specialized equipment and is generally more expensive than other methods. 5. Salt Bath Carburizing: In this method, the steel is immersed in a molten salt bath containing carbon-rich compounds. The salt bath is heated to high temperatures, allowing carbon to diffuse into the steel surface. Salt bath carburizing is a versatile method that can achieve high case depths and excellent surface hardness. However, it requires careful temperature control and can be challenging to remove the salt residues after the process. It is important to select the appropriate method of surface carburizing based on the specific requirements of the special steel, such as desired case depth, hardness, and cost considerations.
- Q: What are the different non-destructive testing methods for special steel?
- There are several non-destructive testing methods that can be used to evaluate special steel materials. These methods are designed to detect any flaws or defects in the steel without causing any damage to the material itself. Some of the commonly used non-destructive testing methods for special steel include: 1. Ultrasonic Testing (UT): This method uses high-frequency sound waves to detect internal flaws or defects in the steel. Ultrasonic waves are directed into the material, and the reflected waves are analyzed to identify any discontinuities such as cracks, voids, or inclusions. 2. Magnetic Particle Testing (MT): This technique is primarily used to identify surface defects in steel. A magnetic field is applied to the material, and iron particles are applied to the surface. If there is a defect present, the magnetic field will cause the particles to cluster around the defect, making it visible for inspection. 3. Liquid Penetrant Testing (PT): PT is a widely used method to detect surface defects in special steel. A liquid dye is applied to the steel surface, and after a certain amount of time, excess dye is removed. A developer is then applied, which draws the dye out of any defects, making them visible for inspection. 4. Radiographic Testing (RT): This method involves the use of X-rays or gamma rays to examine the internal structure of special steel. The steel is exposed to radiation, and the resulting image is captured on a radiographic film or digital detector. This method is particularly effective in detecting internal defects such as porosity, inclusions, or cracks. 5. Eddy Current Testing (ECT): ECT is primarily used for surface inspection of special steel. It involves passing an electrical current through a coil that generates a magnetic field. Any variations in the magnetic field caused by defects on the surface of the steel can be detected and analyzed. These non-destructive testing methods provide valuable information about the quality and integrity of special steel materials without causing any damage. By employing these techniques, manufacturers and engineers can ensure that the steel meets the required standards and specifications, thus enhancing safety and reliability in various applications.
- Q: How is high-speed tool steel used in the production of machining tools?
- High-speed tool steel is used in the production of machining tools due to its exceptional hardness, strength, and heat resistance properties. It is commonly used to make cutting tools such as drills, end mills, taps, and inserts, which are vital for precision machining operations. The high-speed tool steel's ability to retain its hardness even at high temperatures allows these tools to withstand the intense heat generated during the machining process, resulting in improved performance and extended tool life.
- Q: What are the different methods of preventing stress corrosion cracking in special steel?
- There are several methods to prevent stress corrosion cracking in special steel. One common approach is to select a steel alloy with enhanced resistance to stress corrosion cracking. This can be achieved by adding alloying elements such as nickel, chromium, or molybdenum, which help improve the steel's corrosion resistance. Another method is to control the environment in which the steel is exposed. This can involve minimizing exposure to corrosive substances or adjusting temperature and humidity levels. Additionally, surface treatments such as passivation or coating can be applied to create a protective barrier against corrosion. Regular inspection and maintenance of the steel structure are also important to identify and address any potential sources of stress corrosion cracking.
- Q: What are the different methods of non-destructive testing for special steel?
- Special steel can be evaluated for quality and integrity without causing damage using various non-destructive testing (NDT) methods. These methods encompass: 1. Ultrasonic Testing (UT): By emitting high-frequency sound waves with a transducer, defects like cracks or voids within the special steel can be detected. The reflections or echoes are then analyzed to identify any anomalies. 2. Magnetic Particle Testing (MT): This technique relies on magnetic fields to primarily detect surface or near-surface defects in special steel. Inducing a magnetic field in the material and applying magnetic particles allows any discontinuities or defects to gather, forming visible indications. 3. Liquid Penetrant Testing (PT): Involving the application of a liquid dye or penetrant to the special steel's surface, this method draws the penetrant into any surface defects through capillary action. After removing excess penetrant and applying a developer, the indications become visible. 4. Radiographic Testing (RT): This technique employs X-rays or gamma rays to inspect the internal structure of special steel. By exposing the material to radiation and capturing the transmitted radiation on film or a digital detector, any inconsistencies or defects within the material become visible on the resulting image. 5. Eddy Current Testing (ECT): Mainly used for detecting surface or near-surface defects, ECT involves inducing an alternating current into a coil to create an electromagnetic field. Variations in the material's electrical conductivity or magnetic permeability caused by defects generate changes in the coil's impedance, which can be analyzed. 6. Visual Testing (VT): While not a direct NDT method, visual inspection serves as a preliminary step to identify surface defects or irregularities in special steel. By thoroughly visually examining the material with appropriate lighting and magnification tools, any issues can be detected. These diverse methods of non-destructive testing offer valuable insights into special steel's quality, ensuring its structural integrity and reliability across various applications. The selection of a specific method depends on factors like the type and location of the defect being sought, as well as the industry or application's specific requirements.
Send your message to us
Special Steel S45C Carbon Structural Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords