• Special Steel Alloy Steel Grade AISI H13 System 1
  • Special Steel Alloy Steel Grade AISI H13 System 2
  • Special Steel Alloy Steel Grade AISI H13 System 3
Special Steel Alloy Steel Grade AISI H13

Special Steel Alloy Steel Grade AISI H13

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Specifications

H13 steel round bars 
1.Diameter:10mm~600mm, 
2.Delivery Conditon:annealed, black/turned surface 
3.Short Delivery Time

Product information

H13 steel round bars
Chemical Composition(%)       
 CSi Mn P S Cr Mo V
  0.32-0.45  0.80-1.20 0.20-0.50 ≤0.030  ≤0.030 4.75-5.50   1.10-1.75 0.80-1.20
Specialty       
Harden and air cooling steel, 600`C work, high rigidity, high endurance, anti-heating, anti-cracking, electric sediment and middle-melting steel, compact structure, refined in electric cooker, quality of steel is pure, owned good character of equal direction.
Use






1. Extrusion mold of aluminum and magnesium, die-casting mold, especially adapt to the mold in large and complicated form.
2. Extrusion mold of copper alloy, die-casting mold
3. Hot pressing machine mold
Heat Treatment       
1. Quench:1000-1040`C via 600`C and 850`C, preheating oil or wind cooling
2.  Temper temperature and rigidity HBC(reference):   
     quench hardening            108-300 °c               450-500 °c                                 550-5700°c
            53-55                             51-52                           53-54                                          50-52
3. Temper temperature should be higher than working temperature in order to stabilize the working size of mold
4.  Heat up to 650  °c of average temperature in order to eliminate the machined stress, 500  °c air cooling after electric cooker cooling      
5. Tempering, 800-850  °c ,slow cooling after diathermia
Melting Process 
1. EAF: Electric Furnace+LF+VD(Optional)
2. ESR:  Electric Furnace+LF+VD+Eleroslag Remelted(Optional)
UT Class
According to Standard of SEP 1921/84,100% Volume, Level C/c, D/d or E/e
Tolerance on Quantity
+/-10% Per Size

Product show

.jpg

Workshop show

Special Steel Alloy Steel Grade AISI H13

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: How does stainless steel contribute to the construction industry?
Stainless steel contributes to the construction industry by providing durability, corrosion resistance, and aesthetic appeal. Its strength and resistance to rust make it ideal for structural components, such as beams, columns, and reinforcement bars. Stainless steel is also commonly used for architectural elements like cladding, handrails, and fixtures due to its sleek appearance and low maintenance requirements. Overall, stainless steel enhances the longevity and aesthetics of buildings, making it a valuable material in the construction industry.
Q: How is special steel used in the manufacturing of cutting tools?
Special steel is used in the manufacturing of cutting tools because of its high hardness, toughness, and wear resistance. This type of steel can be heat-treated to achieve the desired hardness and can retain its cutting edge for a longer period. It is commonly used in the production of drills, saw blades, and milling cutters to ensure efficient and precise cutting operations.
Q: How does special steel perform in terms of chemical resistance?
Special steel generally performs well in terms of chemical resistance. It is often designed to have high resistance to corrosion, oxidation, and chemical reactions with various substances. This attribute makes it suitable for applications in industries like oil and gas, chemical processing, and marine environments. However, the specific chemical resistance of special steel can vary depending on its composition and treatment, so it is important to consider the specific requirements and consult with experts when selecting the appropriate type of special steel for a particular application.
Q: What are the different surface treatments available for special steel?
There are several different surface treatments available for special steel, including galvanizing, powder coating, anodizing, electroplating, and nitriding. These treatments help enhance the appearance, durability, corrosion resistance, and wear resistance of the steel, making it suitable for various applications in industries such as automotive, construction, and manufacturing.
Q: How does special steel contribute to the electronics industry?
Special steel plays a crucial role in the electronics industry by providing key components and materials that are essential for the manufacturing and performance of electronic devices. It is used in the production of various electronic components including connectors, circuit boards, sensors, and power transmission components, due to its exceptional properties such as high strength, excellent corrosion resistance, and thermal conductivity. Special steel also enables the miniaturization and increased efficiency of electronic devices, enhancing their overall performance and durability.
Q: What are the main corrosion resistance properties of special steel?
The main corrosion resistance properties of special steel include high resistance to rust, oxidation, and chemical attack. It can withstand harsh environments, such as exposure to saltwater, acids, and alkalis, without significant degradation. Additionally, special steel often possesses a passive oxide layer on its surface, which acts as a protective barrier against corrosion.
Q: What are the different applications of special steel in the construction industry?
Special steels have a wide range of uses in the construction industry, serving as versatile materials. Structural components are one of the main applications of special steel in construction. Buildings, bridges, and infrastructure projects that require exceptional strength and durability often use special steels, including high-strength low-alloy (HSLA) steel and weathering steel. Apart from structural uses, special steel is extensively employed in pipeline construction. This is particularly significant for oil and gas pipelines, where corrosion resistance and the ability to withstand high-pressure conditions are vital. Stainless steel, for example, is commonly chosen due to its outstanding resistance to corrosion, which makes it ideal for harsh environments. Another important application of special steel in construction is the production of reinforcing bars, also known as rebars. Reinforcing steel bars reinforce concrete structures like buildings, bridges, and highways by adding strength to withstand tension forces. Special steel rebars, such as micro-alloyed steel or carbon steel, are designed specifically to enhance the durability and structural integrity of concrete structures. Furthermore, special steel is extensively used in the construction of high-rise buildings and skyscrapers. The exceptional strength, ductility, and fire resistance properties of special steels like carbon steel or alloy steel make them perfect for constructing tall structures capable of withstanding heavy loads and resisting fire incidents. Special steel also finds application in the construction of equipment and machinery used in the construction industry. For instance, high-speed steel (HSS) is commonly utilized in manufacturing cutting tools, drill bits, and saw blades, which are essential for various construction activities. HSS possesses exceptional hardness, wear resistance, and high-temperature strength, making it suitable for heavy-duty cutting and drilling applications. In conclusion, special steel is an essential material in the construction industry due to its superior strength, durability, corrosion resistance, and fire resistance properties. It serves various purposes in structural components, pipelines, reinforcing bars, high-rise buildings, and construction machinery. Special steel ensures the safety, longevity, and reliability of construction projects, making it indispensable in the industry.
Q: What are the common defects found in special steel?
Some common defects found in special steel include surface defects such as scratches, pitting, and scaling, as well as internal defects like cracks, voids, and inclusions. These defects can negatively impact the mechanical properties and performance of the steel, compromising its strength, durability, and corrosion resistance.
Q: How does the hardness of special steel affect its machinability?
The machinability of special steel is significantly influenced by its hardness. Generally, as the hardness of the steel increases, its machinability decreases. Machinability refers to how easily a material can be machined or shaped using various machining processes like cutting, drilling, or milling. Hardness denotes a material's resistance to indentation or scratching. It is typically measured using the Rockwell hardness scale or the Brinell hardness test. Special steel, known for its high strength and durability, usually possesses a higher hardness compared to other steel types. When machining special steel, encountering a harder material presents challenges for multiple reasons. Firstly, cutting harder materials requires greater cutting forces and generates more heat during the machining process, making them more difficult to cut. Consequently, this leads to increased tool wear and reduced tool life, resulting in higher production costs. Secondly, hard steel tends to have lower ductility and toughness, making it more susceptible to cracking or chipping during machining. As a consequence, poor surface finish, dimensional inaccuracies, and even component failure can occur. Furthermore, increased hardness in special steel also impacts chip formation. Harder materials tend to produce shorter and more segmented chips, which can cause problems with chip evacuation and tool clogging. This further hampers the machining process and affects overall productivity. To enhance the machinability of hard special steel, several strategies can be employed. Choosing appropriate cutting tools with specific geometries and coatings designed for hard materials is crucial. Additionally, optimizing cutting parameters such as cutting speed, feed rate, and depth of cut can help mitigate the negative effects of hardness on machinability. In conclusion, the hardness of special steel directly affects its machinability. As hardness increases, machinability decreases due to higher cutting forces, increased tool wear, reduced ductility, and chip formation challenges. However, by employing proper tool selection and optimizing cutting parameters, the machinability of hard special steel can be improved, enabling efficient and cost-effective machining processes.
Q: How does special steel perform in cryogenic corrosion resistance?
Special steel has excellent performance in cryogenic corrosion resistance. It is specifically designed to withstand low temperatures and resist the corrosive effects of cryogenic substances. This type of steel exhibits minimal degradation, maintaining its structural integrity and preventing corrosion, even in extreme cold environments.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords