• Alloy Steel 4Cr13 Special Steel Carbon Steel System 1
  • Alloy Steel 4Cr13 Special Steel Carbon Steel System 2
  • Alloy Steel 4Cr13 Special Steel Carbon Steel System 3
Alloy Steel 4Cr13 Special Steel Carbon Steel

Alloy Steel 4Cr13 Special Steel Carbon Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
as required
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

Chemical Composition(GB)%

C

Si

Mn

Cr

P

S

0.4

0.5

0.7

13

≤0.030

≤0.030

 

Standard

GB

ASTM 

DIN

JIS

4Cr13

4.2

1.2083

420J2

 

Available Size

Rolled plate

12-120mm*720mm*6000mm

Module

130-400mm*1000mm*6000mm

 

Heat Treatment

Processing

Temperature ℃

Hardness

Anneal

750-800

≤235HB

Quenching

1050-1100

≥50HRC

Tempering

200-300

≥50HRC

 

Characterstics

1.High corrosion resistance and mirror performance

2.Higher strength and abrasion resistance


Applications:Suitable for precise dies with super mirror performance and abrasion resistance,camera components,optical lens


.jpg

Alloy Steel 4Cr13 Special Steel Carbon Steel

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

    We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.


Q: What are the different types of tool and die steel?
There are several different types of tool and die steel, including high-speed steel, carbon steel, and alloy steel. High-speed steel is known for its ability to maintain hardness and withstand high temperatures, making it suitable for cutting tools. Carbon steel is often used for dies and punches due to its toughness and wear resistance. Alloy steel, which is a combination of iron and other elements, offers enhanced strength and durability, making it ideal for various tool and die applications.
Q: What are the different methods of surface peening for special steel?
Surface peening is a process used to improve the mechanical properties of special steels by inducing compressive stresses on the surface. This technique helps to enhance the fatigue life, resistance to stress corrosion cracking, and overall durability of the material. There are several methods of surface peening that can be employed on special steel, including: 1. Shot Peening: This method involves bombarding the surface of the steel with high-velocity spherical particles, known as shot. The impact of the shot particles creates plastic deformation and induces compressive stresses on the surface. Shot peening is widely used due to its effectiveness in improving fatigue life. 2. Ultrasonic Peening: Ultrasonic peening utilizes high-frequency vibrations to induce compressive stresses on the surface of the steel. The vibrations are applied through a tool that is in contact with the surface, causing plastic deformation and the generation of compressive stresses. 3. Laser Peening: In laser peening, a high-energy laser beam is used to create shockwaves on the surface of the steel. These shockwaves induce plastic deformation and generate compressive stresses. Laser peening is known for its precision and ability to target specific areas of the material. 4. Cavitation Peening: This method involves creating cavitation bubbles in a liquid medium near the surface of the steel. The collapse of these bubbles generates high-intensity shockwaves that induce compressive stresses on the surface. Cavitation peening is particularly useful for irregularly shaped components. 5. Needle Peening: Needle peening is a technique where a bundle of fine needles is repeatedly impacted on the surface of the steel. This process induces plastic deformation and generates compressive stresses. Needle peening is commonly used for localized treatment of small areas. Each of these methods has its advantages and is suitable for specific applications. The selection of the surface peening method depends on factors such as the type of special steel, component geometry, desired improvements, and available equipment. It is important to consider the specific requirements and consult with experts to determine the most appropriate method for surface peening special steel.
Q: How does special steel contribute to the manufacturing of precision components?
Special steel plays a crucial role in the manufacturing of precision components by offering superior strength, durability, and resistance to wear and corrosion. Its unique properties allow for the production of complex and intricate parts that require high levels of precision and accuracy. Additionally, special steel often exhibits excellent machinability, enabling manufacturers to achieve tight tolerances and fine finishes. Overall, special steel enhances the performance and reliability of precision components, making it an essential material in the manufacturing industry.
Q: What are the different manufacturing processes used for special steel?
There are several manufacturing processes used for special steel, including casting, forging, rolling, and heat treatment. Casting involves melting and pouring steel into molds to create complex shapes. Forging involves shaping steel by applying pressure and heat to deform it into desired forms. Rolling is a process where steel is passed through a series of rollers to reduce its thickness and shape it into sheets or bars. Lastly, heat treatment is used to alter the properties of steel by subjecting it to controlled heating and cooling processes.
Q: What are the applications of special steel in aerospace engineering?
The aerospace industry heavily relies on special steels for their distinct characteristics and capabilities. These steels are specifically crafted to meet the demanding needs of aerospace engineering, where utmost importance is placed on strength, resistance to corrosion, and tolerance to extreme temperatures. Here are some notable applications of special steel in aerospace engineering: 1. Aircraft engine components: Stainless steels and other special steels are extensively used in the production of aircraft engine components. These steels offer unparalleled strength, resistance to corrosion, and durability at high temperatures, making them perfect for critical parts like turbine blades, compressor discs, and shafts. 2. Landing gear systems: The landing gear of an aircraft undergoes significant stress and impact during takeoff, landing, and taxiing. To withstand these forces, special steels with remarkable strength, toughness, and resistance to fatigue are utilized in the manufacturing of landing gear components such as struts, axles, and shock absorbers. 3. Structural components: Aerospace structures must endure dynamic loads, vibrations, and extreme environmental conditions. Various structural components like wings, fuselage frames, and support structures employ special steels, particularly high-strength low-alloy (HSLA) steels. These steels offer exceptional strength-to-weight ratios, ensuring structural integrity while minimizing weight. 4. Fasteners: Special steel fasteners, including bolts, screws, and rivets, play a crucial role in joining different components in aerospace applications. These fasteners are typically made from high-strength steels, providing exceptional tensile and shear strength, as well as resistance to corrosion, to ensure secure and reliable connections. 5. Fuel system components: Special steels with high resistance to corrosion, such as stainless steels, are utilized in the construction of fuel system components like tanks, pipes, and valves. These steels prevent fuel leakage and maintain the system's integrity, even in harsh environments. 6. Electrical connectors: Aerospace electrical systems necessitate reliable and efficient electrical connectors. Special steels, often possessing high electrical conductivity and resistance to corrosion, are employed in the manufacturing of connectors, guaranteeing optimal performance and longevity. In conclusion, the outstanding properties of special steels make them indispensable in aerospace engineering. Whether it is for critical engine components, landing gear systems, structural applications, fasteners, fuel systems, or electrical connectors, these steels provide the necessary strength, resistance to corrosion, and stability in extreme temperatures, ensuring safe and efficient aircraft operation.
Q: What are the different heat treatment methods for special steel?
There are several different heat treatment methods for special steel, including annealing, quenching and tempering, case hardening, and precipitation hardening.
Q: What are the different wear-resistant grades of special steel?
In the market, one can find various grades of special steel that are resistant to wear. Each grade has its own unique properties and applications. Some commonly used grades include: 1. D2 Steel: This grade is known for its high resistance to wear and its exceptional toughness. It is often utilized in the manufacturing of cutting tools, punches, and dies. 2. M2 Steel: M2 steel is a type of high-speed steel that exhibits remarkable resistance to wear and heat. It is commonly employed in the production of drill bits, milling cutters, and other tools that require high hardness and wear resistance. 3. A2 Steel: A2 steel is a versatile grade known for its excellent resistance to wear and toughness. It is frequently utilized in the manufacturing of cold work tools, such as blanking dies and gauges. 4. O1 Steel: O1 steel is an oil-hardening tool steel that possesses good wear resistance and dimensional stability. It is commonly used in the production of blades, punches, and other cutting tools. 5. S7 Steel: S7 steel is a grade that is highly resistant to shock and wear. It is often employed in the manufacturing of chisels, shear blades, and other tools that require resistance to impact and wear. 6. AR400 Steel: AR400 steel is a specific type of abrasion-resistant steel that has a hardness of approximately 400 Brinell. It is frequently utilized in heavy-duty applications such as mining equipment, bulldozer blades, and dump truck bodies. These examples merely scratch the surface of the various wear-resistant grades of special steel available in the market. The choice of grade depends on the specific requirements of the application, including the type and intensity of wear, operating conditions, and desired hardness. Seeking advice from a steel supplier or expert can aid in selecting the most suitable grade for a particular application.
Q: How does heat-resistant steel perform in high-temperature applications?
Heat-resistant steel performs exceptionally well in high-temperature applications. It exhibits remarkable strength and stability, allowing it to withstand extreme heat without losing its structural integrity or mechanical properties. This type of steel maintains its resistance to oxidation, corrosion, and creep, making it an ideal choice for various industries such as aerospace, power generation, and petrochemical. Its ability to retain its strength and shape under extreme heat conditions makes it a reliable material for applications where high temperatures are involved.
Q: How does special steel perform in high-vibration applications?
Special steel is known for its excellent performance in high-vibration applications. Its unique composition and properties make it highly resistant to the effects of vibration, ensuring optimal performance and durability in such environments. One of the key features of special steel is its high tensile strength. This strength allows it to withstand the forces and stresses generated by vibration without undergoing deformation or failure. This property is vital in high-vibration applications, where constant movement and oscillation can subject materials to significant stress. Moreover, special steel exhibits exceptional fatigue strength, meaning it can endure repeated cycles of stress and vibration without compromising its structural integrity. This makes it ideal for applications that involve continuous or cyclic vibration, such as machinery, equipment, and structures subjected to dynamic loads. Additionally, special steel possesses excellent damping properties. Damping refers to the ability of a material to absorb and dissipate energy generated by vibrations. Special steel's superior damping characteristics help reduce the magnitude and duration of vibrations, minimizing the impact on the surrounding components and structures. This contributes to overall system stability and reduces the risk of fatigue or premature failure. Furthermore, special steel is often engineered to have high resistance to corrosion and wear. This resistance ensures that the material remains robust and reliable even in harsh environments where vibration-induced corrosion or erosion may occur. By maintaining its protective coating and integrity, special steel can effectively withstand the challenges posed by high-vibration applications. In summary, special steel performs exceptionally well in high-vibration applications due to its high tensile strength, fatigue resistance, damping properties, and corrosion/wear resistance. Its combination of these properties ensures optimal performance, longevity, and safety in environments characterized by significant vibration and dynamic loads.
Q: Can special steel be used in food processing?
Yes, special steel can be used in food processing. Special steels, such as stainless steel, are commonly used in the food processing industry due to their unique properties that make them suitable for handling food safely. Stainless steel is resistant to corrosion, which makes it ideal for handling acidic or salty foods without the risk of contamination. It is also non-reactive, meaning it does not release any harmful substances into the food during processing. Additionally, stainless steel is easy to clean and maintain, ensuring high hygiene standards in food processing facilities. With these qualities, special steels like stainless steel are widely used in the production of food processing equipment, such as tanks, pipes, and utensils.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords