SAE 1020 Round Steel Bars Special Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Products description details
1. Chemical Composition (%)
C | Si | Mn | Cr | Ni | Cu | P | S |
0.17-0.23 | 0.17-0.37 | 0.35-0.65 | ≤0.25 | ≤0.30 | ≤0.25 | ≤0.035 | ≤0.035 |
2. Mechanical Properties
Tensile strength | Yield strength | Elongation rate | Contractibility rate | Hardness(HB) |
≥410MPa | ≥245MPa | ≥25% | ≥55% | ≤156(without heat treatment) |
3. Standard
GB:20, AISI: 1020, JIS: S20C
4. Specification
Dia: 8mm-480mm or according to your requirements
Length: 1m-12mm or according to your requirements
5. Delivery Condition
Hot rolled, forged, QT heat treatment and normalizing
6. Payment term
T/T, L/C or we can negotiate.
7. Delivery time
20days after the order confirmed
8. Characteristics
1) The strength and hardness of S20C/ 1020/ 20 is higher than that of S15C/ 1015/ 15.
2) Good plasticity and weldability.
3) Good toughness after hot rolling and normalization.
9. Application
High-quality carbon structural steel/S20C/ 1020/ 20
S20C structural carbon steel bar /1020 /20 can be used to be manufactured medium or small carburization or nitrocarburizing parts and press forging parts, such as lever shaft, selector fork of speed changing box, gear, heavy mechanical lever and shackle, etc.
Product show
Workshop show
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q:How does special steel perform in dynamic loading conditions?
- Thanks to its high strength, toughness, and fatigue resistance, special steel excels in dynamic loading scenarios. When exposed to repeated and fluctuating stresses, special steel can endure the impact and maintain its mechanical properties without any setbacks or distortions. The distinct composition and processing techniques employed in the production of special steel, including the addition of alloying elements and heat treatment, significantly bolster its ability to withstand dynamic loading. Consequently, special steel proves to be an optimal material for applications that involve dynamic forces, such as automotive components, machinery parts, and structural elements utilized in construction. The exceptional performance of special steel under dynamic loading conditions guarantees durability, reliability, and safety across various industries.
- Q:What are the potential health hazards associated with working with special steel?
- There are potential health risks when working with special steel due to the materials and processes involved. Some of the main health hazards associated with this work include: 1. Inhaling harmful fumes: Special steels often contain various alloys and elements, such as chromium, nickel, and manganese. These can release toxic fumes when heated or welded. Prolonged exposure to these fumes can cause respiratory issues like bronchitis, asthma, or even lung cancer. 2. Irritation of the skin and eyes: Steelworking involves handling sharp edges, cutting tools, and abrasive materials, which can cause cuts, scratches, or puncture wounds. If not treated properly, these injuries can become infected or lead to more serious conditions. Additionally, contact with certain alloys in special steel can irritate the skin or cause allergic reactions. It's important to wear eye protection to prevent injuries from debris or sparks. 3. Hearing loss caused by noise: Steel manufacturing processes often involve heavy machinery, which creates high levels of noise. Prolonged exposure to this noise can result in permanent hearing loss or other auditory issues. Using appropriate hearing protection, like earmuffs or earplugs, can help reduce the risk. 4. Hazards related to ergonomics: Steelworking often requires repetitive movements, heavy lifting, or uncomfortable postures. This can lead to musculoskeletal disorders such as back pain, carpal tunnel syndrome, or tendonitis. Employers should implement proper ergonomic practices, such as adjustable workstations, lifting aids, and regular breaks, to prevent these hazards. 5. Thermal hazards: Special steel manufacturing processes involve high temperatures, such as welding or forging. Without proper protective clothing or equipment, this can result in burns. Exposure to extreme heat can also lead to heat-related illnesses like heat exhaustion or heat stroke. Adequate training, appropriate personal protective equipment (PPE), and regular breaks in cooler areas can help reduce these risks. To protect workers from these potential health hazards, employers should follow proper safety protocols. This includes providing employee training, ensuring the use of personal protective equipment, conducting regular health monitoring, and maintaining a clean and well-ventilated work environment. It is important to strictly adhere to occupational health and safety regulations in order to minimize the risks involved in working with special steel.
- Q:Can special steel be used for manufacturing tools?
- Certainly, tools can be manufactured using special steel. Special steel refers to a specific type of steel that is meticulously engineered and designed to possess unique properties and characteristics. These properties make it well-suited for specific applications, such as manufacturing tools. In fact, special steel is often preferred for tool production due to its exceptional strength, hardness, and durability. These qualities allow tools made from special steel to withstand high levels of stress, wear, and impact. Consequently, they are ideal for demanding tasks like cutting, drilling, shaping, and machining. Additionally, special steel also exhibits excellent heat resistance, corrosion resistance, and dimensional stability. These additional attributes further enhance its suitability for tool manufacturing. Overall, the use of special steel in tool production guarantees the creation of top-quality, long-lasting, and efficient tools capable of effectively performing various tasks across different industries.
- Q:How is free-cutting steel used in the manufacturing of screws and bolts?
- Free-cutting steel is used in the manufacturing of screws and bolts because of its excellent machinability. It contains additives such as sulfur, lead, or bismuth that improve its ability to be easily and efficiently shaped into the desired form. This type of steel enables manufacturers to produce screws and bolts with intricate threading and precise dimensions, resulting in high-quality and reliable fasteners.
- Q:What are the main advantages of using special steel in the food processing industry?
- The main advantages of using special steel in the food processing industry are its exceptional strength and durability, resistance to corrosion and bacteria growth, and ease of cleaning and maintenance. Special steel is highly resistant to wear and tear, ensuring longevity and reducing the need for frequent replacements. Its corrosion resistance properties prevent contamination and maintain the integrity of food products. Additionally, special steel's smooth surface and non-porous nature make it easy to clean, ensuring optimal hygiene standards in food processing facilities.
- Q:How is special steel used in the manufacturing of bearings?
- Due to its unique properties, special steel is utilized in the production of bearings, which are vital components employed in various industries. These bearings serve the purpose of reducing friction between moving parts, promoting smooth motion, and supporting heavy loads. The utilization of special steel guarantees exceptional performance and longevity. For the production of bearings, the preferred choice of special steel includes stainless steel and high-carbon chromium steel. This selection is based on the remarkable strength, hardness, and resistance to corrosion that these types of steel possess. These properties enable the bearings to endure heavy loads, withstand wear and tear, and operate effectively in challenging environments. The manufacturing process for bearings involves shaping and heat treatment. Initially, special steel is melted and cast into the desired form, typically a ring or a ball. Subsequently, the steel undergoes various heat treatment procedures like annealing, quenching, and tempering to enhance its hardness, toughness, and overall mechanical properties. This heat treatment ensures that the steel is adequately hardened to endure the stress and friction it will encounter during operation. Once the steel has undergone appropriate heat treatment, it is machined and ground to attain precise dimensions and smooth surfaces. This step is vital to ensure that the bearings possess the necessary tolerance and can rotate smoothly without any interference. Special steel's machinability and grindability simplify the achievement of the required accuracy and surface finish. Following the machining process, the bearings can be assembled with other components and lubricated to ensure proper lubrication and minimize friction. Special steel's corrosion resistance is particularly valuable at this stage as it shields the bearings from rust and degradation caused by moisture or aggressive environments. In conclusion, special steel is chosen for the production of bearings due to its exceptional strength, hardness, and corrosion resistance. These properties enable the bearings to withstand heavy loads, resist wear, and function effectively in challenging conditions. With the aid of its excellent machinability and grindability, special steel guarantees the attainment of the necessary precision and surface finish. Overall, special steel plays a pivotal role in the production of high-quality bearings that enable efficient and reliable motion in various industries.
- Q:What are the applications of special steel in aerospace engineering?
- The aerospace industry heavily relies on special steels for their distinct characteristics and capabilities. These steels are specifically crafted to meet the demanding needs of aerospace engineering, where utmost importance is placed on strength, resistance to corrosion, and tolerance to extreme temperatures. Here are some notable applications of special steel in aerospace engineering: 1. Aircraft engine components: Stainless steels and other special steels are extensively used in the production of aircraft engine components. These steels offer unparalleled strength, resistance to corrosion, and durability at high temperatures, making them perfect for critical parts like turbine blades, compressor discs, and shafts. 2. Landing gear systems: The landing gear of an aircraft undergoes significant stress and impact during takeoff, landing, and taxiing. To withstand these forces, special steels with remarkable strength, toughness, and resistance to fatigue are utilized in the manufacturing of landing gear components such as struts, axles, and shock absorbers. 3. Structural components: Aerospace structures must endure dynamic loads, vibrations, and extreme environmental conditions. Various structural components like wings, fuselage frames, and support structures employ special steels, particularly high-strength low-alloy (HSLA) steels. These steels offer exceptional strength-to-weight ratios, ensuring structural integrity while minimizing weight. 4. Fasteners: Special steel fasteners, including bolts, screws, and rivets, play a crucial role in joining different components in aerospace applications. These fasteners are typically made from high-strength steels, providing exceptional tensile and shear strength, as well as resistance to corrosion, to ensure secure and reliable connections. 5. Fuel system components: Special steels with high resistance to corrosion, such as stainless steels, are utilized in the construction of fuel system components like tanks, pipes, and valves. These steels prevent fuel leakage and maintain the system's integrity, even in harsh environments. 6. Electrical connectors: Aerospace electrical systems necessitate reliable and efficient electrical connectors. Special steels, often possessing high electrical conductivity and resistance to corrosion, are employed in the manufacturing of connectors, guaranteeing optimal performance and longevity. In conclusion, the outstanding properties of special steels make them indispensable in aerospace engineering. Whether it is for critical engine components, landing gear systems, structural applications, fasteners, fuel systems, or electrical connectors, these steels provide the necessary strength, resistance to corrosion, and stability in extreme temperatures, ensuring safe and efficient aircraft operation.
- Q:What are the different nitriding techniques used for special steel?
- There are several nitriding techniques used for special steel, including gas nitriding, salt bath nitriding, plasma nitriding, and ion nitriding. These techniques involve exposing the steel to a nitrogen-rich environment, which allows nitrogen atoms to diffuse into the surface of the steel, forming a hardened layer. Each technique has its own advantages and is suitable for specific applications based on factors such as the steel composition, desired hardness, and surface finish requirements.
- Q:What are the different methods for improving the toughness of special steel?
- There are multiple approaches that can be utilized to enhance the toughness of special steel. Among the most effective techniques is the utilization of alloying. By incorporating specific elements like nickel, chromium, or molybdenum into the steel composition, the toughness can be greatly enhanced. These alloying elements aid in increasing the strength and resistance to cracking and fracture. Another method involves employing heat treatment processes. For instance, one can utilize quenching and tempering to improve the toughness of the steel. Quenching entails rapidly cooling the steel from a high temperature to room temperature, resulting in a hardened structure. Subsequently, tempering takes place, where the steel is reheated to a precise temperature and then slowly cooled. This process helps alleviate internal stresses and enhance the toughness of the steel. Furthermore, refining the microstructure of the steel can also amplify its toughness. Techniques like grain refinement, which encompass reducing the size of the grains in the steel, can lead to improved toughness. This is due to the fact that smaller grains hinder the propagation of cracks, making the steel more resistant to fracture. Lastly, special steel can undergo processes such as shot peening or surface hardening to augment its toughness. Shot peening involves bombarding the steel's surface with tiny metallic or ceramic particles, inducing compressive stresses and enhancing resistance to crack initiation. Surface hardening techniques like carburizing or nitriding can generate a hardened layer on the steel's surface, increasing its toughness and wear resistance. In conclusion, the various methods for enhancing the toughness of special steel encompass alloying, heat treatment processes, microstructure refinement, and surface treatments. Each of these techniques can be customized to meet the specific requirements of the steel and achieve the desired level of toughness.
- Q:What are the different processes involved in making special steel?
- The different processes involved in making special steel include melting, refining, and alloying of the raw materials, followed by casting, rolling, and heat treatment to achieve the desired properties and composition.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
SAE 1020 Round Steel Bars Special Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords