• Rio Star Steel Pipes - Prime Galvanized Pipe Full Sizes for Greenhouse Frames/Handrails System 1
  • Rio Star Steel Pipes - Prime Galvanized Pipe Full Sizes for Greenhouse Frames/Handrails System 2
  • Rio Star Steel Pipes - Prime Galvanized Pipe Full Sizes for Greenhouse Frames/Handrails System 3
Rio Star Steel Pipes - Prime Galvanized Pipe Full Sizes for Greenhouse Frames/Handrails

Rio Star Steel Pipes - Prime Galvanized Pipe Full Sizes for Greenhouse Frames/Handrails

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1Structure of Prime Galvanized Pipe full sizes for greenhouse frames/handrails: 

The galvanized pipes are used as

Scaffolding pipe, Structure pipe, Fence/Door pipe, Furniture, Low pressure fluid pipe for 

water oil or gas, Boiler pipe

Applicable for greenhouse, building, fences construction, and transferring water .



2‍‍Main Features of Prime Galvanized Pipe full sizes for greenhouse frames/handrails:

• High manufacturing accuracy

• High strength

• Small inertia resistance

• Strong heat dissipation ability

• Good visual effect

• Reasonable price 

 

3Prime Galvanized Pipe full sizes for greenhouse frames/handrails Specification

Standard

GB, DIN, ASTM

ASTM A106-2006, ASTM A53-2007

Grade

10#-45#, 16Mn

10#, 20#, 45#, 16Mn

Thickness

8 - 33 mm

Section Shape

Round

Outer Diameter

133 - 219 mm

Place of Origin

Shandong, China (Mainland)

Secondary Or Not

Non-secondary

Application

Hydraulic Pipe

Technique

Cold Drawn

Certification

API

Surface Treatment

factory state or painted black

Special Pipe

API Pipe

Alloy Or Not

Non-alloy

Length

5-12M

Outer Diameter

21.3-610mm

Grade 

20#, 45#, Q345, API J55, API K55, API L80, API N80, API P110, A53B

Standard

ASME, ASTM

 

1) Material:20#(ASTM A 106/A53 GRB.API5LGRB,GB),45#,16Mn,10#.

2) Specification range:OD:21.3-610mm,WT:6-70mm,length:6-12m or according to the requirement of clients.

3) Excutive standards:GB,ASME API5L.ASTM A 106/A53,Despite of the above standards,we can also supply seamless steel pipe with standard of DIN,JIS,and so on,and also develop new products according to the requirements of our clients!
4) Surface:black lacquered,varnish coating or galvanized.
5) Ends:Beveled or square cut,plastic capped,painted.
6) Packing:bundles wrapped with strong steel strip,seaworthy packing. 

 

 

4Packaging & Delivery

Packaging Details:

seaworthy package,bundles wrapped with   strong steel strip

Delivery Detail:

15-30days after received 30%TT

 

5FAQ of Prime Galvanized Pipe full sizes for greenhouse frames/handrails :

How is the quality of your products?
    Our products are manufactured strictly according to national and internaional standard, and we take a test 
on every pipe before delivered out. If you want see our quality certifications and all kinds of testing report, please just ask us for it.
Guaranteed: If products’ quality don’t accord to discription as we give or the promise before you place order, we promise 100% refund.

How about price?
    Yes, we are factory and be able to give you lowest price below market one, and we have a policy that “ for saving time and absolutely honest business attitude, we quote as lowest as possible for any customer, and discount can be given according to quantity”,if you like bargain and factory price is not low enough as you think, just don’t waste your time.Please trust the quotation we would give you, it is professional one.

Why should you chose us?
    Chose happens because of quality, then price, We can give you both.Additionally, we can also offer professional products inquiry, products knowledge train(for agents), smooth goods delivery, exellent customer solution proposals.Our service formula: good quality+good price+good service=customer’s trust
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem.

 

6‍‍Prime Galvanized Pipe full sizes for greenhouse frames/handrails images ‍‍

Prime Galvanized Pipe full sizes for greenhouse frames/handrails

Prime Galvanized Pipe full sizes for greenhouse frames/handrails

Prime Galvanized Pipe full sizes for greenhouse frames/handrails


Q:Seamed steel pipe seamless steel pipe, carbon steel pipe, galvanized pipe, four how to distinguish between
Welded and seamless steel pipe is divided according to the processing form, usually welded seam steel tube, seamless steel tube drawing and hot two ways, carbon steel is material, galvanized pipe is welded pipe production after the surface is galvanized
Q:Can steel pipes be used for underground culverts?
Yes, steel pipes can be used for underground culverts. Steel pipes are known for their strength, durability, and resistance to various environmental factors, which makes them suitable for underground applications. They can withstand heavy loads, high water pressure, and the corrosive effects of soil and water. Additionally, steel pipes are available in various sizes and thicknesses, allowing for customization to fit specific project requirements. However, it is important to consider factors such as the soil conditions, water table levels, and potential for corrosion when selecting the appropriate type of steel and protective coatings for the pipes.
Q:What does "buried steel pipe" 6*2SC100 mean?
This is the electrical drawings, such as water supply and drainage, HVAC is that DN, SC is the laying of electrical wiring, which is defined as threading pipe laying. 100 is the nominal diameter of the pipe, unit millimeters.
Q:Are there specifications for scaffold steel pipe with 48mm * 3.2mm?
Scaffold tubes are our name for materials used to build scaffolding, because most scaffolding uses tubular bamboo or steel tubing. Bamboo and other bamboo is for a long time in the use of the scaffolding tube, but due to lack of safety and durability, now only in rural and urban area construction is lagging behind some of the home building small building has been used. The modernization construction, the most commonly used type of scaffolding pipe is steel pipe, the scaffolding should not only meet the demand of workers, but also to meet the characteristics of scaffolding firm and durable, so tough hard steel is the best choice. The selected steel pipe generally requires smooth surface, no cracks, no bending, no rust, and meet the relevant national standards.
Q:How to perform nondestructive inspection of steel tubes
Radiographic inspection (RT)One of the earliest nondestructive testing methods is widely used in the inspection of internal defects of metals and non-metallic materials and products, with a history of at least 50 years. It has incomparable unique advantages, that is to test the correctness, reliability and intuition of the defects, and the ray film can be used for the analysis of defects and as a quality certificate archive. But this method also has the disadvantages of more complicated equipment and higher cost, and should pay attention to the protection of radiation.
Q:How do you calculate the bending moment of a steel pipe?
To calculate the bending moment of a steel pipe, you need to consider both the applied load and the structural properties of the pipe. The bending moment is a measure of the internal forces within the pipe caused by the applied load. The bending moment can be calculated using the following equation: Bending Moment = Load x Distance Here, the load represents the external force acting on the pipe, and the distance is the distance from the point where the load is applied to the point where the bending moment is being calculated. In order to accurately calculate the bending moment, you must also consider the properties of the steel pipe. This includes the pipe's cross-sectional area, second moment of area (also known as the moment of inertia), and the modulus of elasticity. The second moment of area reflects the pipe's resistance to bending and can be calculated based on the dimensions of the pipe's cross-section. The modulus of elasticity represents the pipe's stiffness and can be obtained from material properties data. Once you have determined the load, distance, cross-sectional area, moment of inertia, and modulus of elasticity, you can plug these values into the bending moment equation to calculate the bending moment for the steel pipe. It is important to note that the calculation of bending moment assumes linear elastic behavior, which means that the pipe does not exceed its elastic limit and does not undergo plastic deformation. If the pipe is subjected to loads that exceed its capacity, the calculation of bending moment may not accurately represent the actual behavior of the pipe. In such cases, it is advisable to consult with a structural engineer or use more sophisticated analysis methods to accurately assess the bending moment.
Q:What is the difference between steel pipe and concrete pipe?
Steel pipe and concrete pipe are commonly used for various applications, but they have significant differences in material composition and properties. To begin with, the primary distinction lies in the materials utilized to manufacture these pipes. Steel pipes consist of steel, an alloy of iron and carbon. Conversely, concrete pipes are composed of a mixture of cement, aggregate (such as sand or gravel), and water. Additionally, steel pipes are renowned for their strength and durability. They can withstand high pressure, making them suitable for transporting fluids or gases under high pressure. Steel pipes also possess high resistance to corrosion, which is advantageous in environments exposed to moisture or chemicals. In contrast, concrete pipes are not as sturdy as steel pipes and are more prone to cracking or damage under high pressure. Nevertheless, they can still handle moderate pressure loads and are often employed in drainage systems or sewage applications. Another noteworthy difference is the installation process. Steel pipes are typically joined together through welding techniques like butt welding or socket welding, creating a seamless and robust connection between the pipes. Conversely, concrete pipes are often installed using rubber or gasketed joints, which are simpler to assemble and disassemble. Cost is another factor where steel and concrete pipes diverge. Steel pipes tend to be more expensive due to the higher cost of steel as a raw material and the additional labor required for welding and fabrication. On the other hand, concrete pipes are generally more cost-effective as the materials used in their production are more readily available and the installation process is simpler. In summary, the main disparities between steel pipes and concrete pipes revolve around their material composition, strength, resistance to corrosion, installation process, and cost. Steel pipes offer superior strength and durability, making them suitable for high-pressure applications and environments prone to corrosion. Concrete pipes, while not as robust, are cost-effective and commonly used in drainage systems or sewage applications.
Q:What is the impact of steel pipe size on flow rate and pressure?
The steel pipe size has a significant impact on both the flow rate and pressure. A larger pipe size allows for higher flow rates by reducing the frictional losses, resulting in increased fluid velocity. This leads to higher pressure drops across the pipe due to the increased surface area exposed to the flowing fluid. Conversely, a smaller pipe size restricts the flow, causing higher pressure drops and lower flow rates. Therefore, selecting an appropriate pipe size is crucial to ensure optimal flow rates and pressure levels in a system.
Q:How are steel pipes transported from the manufacturing site to the construction site?
Steel pipes are typically transported from the manufacturing site to the construction site through various means, including trucking, rail transportation, and sometimes even by barges or ships for longer distances. The chosen mode of transportation depends on factors such as the distance between the sites, the quantity and size of the pipes, and the available infrastructure.
Q:What are the factors affecting the pressure rating of steel pipes?
The factors affecting the pressure rating of steel pipes include the thickness and strength of the pipe material, the diameter and length of the pipe, the temperature of the fluid being transported, the type of fluid, and the presence of any corrosive substances or external loads.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords