• Recarburizer 3-5MM 93% FC Carburant Carbon Additives for steel plant System 1
  • Recarburizer 3-5MM 93% FC Carburant Carbon Additives for steel plant System 2
  • Recarburizer 3-5MM 93% FC Carburant Carbon Additives for steel plant System 3
  • Recarburizer 3-5MM 93% FC Carburant Carbon Additives for steel plant System 4
  • Recarburizer 3-5MM 93% FC Carburant Carbon Additives for steel plant System 5
Recarburizer 3-5MM 93% FC Carburant Carbon Additives for steel plant

Recarburizer 3-5MM 93% FC Carburant Carbon Additives for steel plant

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications Of Recarburizer 93% FC


- High C content;

- Low S and N content;

- High abosorbility;

Recarburizer(Carburant, carbon additives) with high quality, 0-20mm for metal casting foundry and steel plant, low nitrogen content and high carbon content, min 90% carbon content, at the same time as your requirements with no problem. The best media for adding carbon.



Technical Data Sheet of Recarburizer 93% FC


Fixed carbon

≥ 93%

Ash content

≤ 5.0%

Vol . Matter

≤ 1.0%

Sulphur content

≤ 0.3%

Moisture content 

≤ 0.3%

Size 

0-20mm or as your requirement.

Packing

- 25kg bag 

- One tone bags, Jumbo bag

Delivery time 

In 5-10 working days or depends on the order quantity

Supply ability

50000  Metric Ton Per Month

Payment terms

L/C at sight or T/T

 

Available Size: 0,1-4mm, 1-5mm, 3-8mm, 8-20mm (as per customers’ requirements)          

Usage: widely used in casting foundry, steel-making, metallurgical Etc.


 

Applications of  Recarburizer 93% FC


Mainly used in steel making in electrical stove, screening water, ship building sandblast to remove rust,producing carbon materials Etc.

 


Characteristics of  Recarburizer 93% FC


- Particle size, porosity, absorption speed stable

- High degree of carbonize product, increase the original nuclear capability in the shape of liquid iron. 

- Increased in the inoclation of nodular cast iron ball ink quantiyt, increase in th electric furnace iron graphit crystal nucleus. 

- Excellent performance, stable.

 


Q: What are the different types of carbon fibers?
There are several different types of carbon fibers, including standard modulus carbon fiber, intermediate modulus carbon fiber, high modulus carbon fiber, and ultra-high modulus carbon fiber. These types vary in their strength, stiffness, and cost, making them suitable for different applications and industries.
Q: How does carbon impact the growth and development of plants?
Carbon is an essential element for the growth and development of plants. It plays a crucial role in the process of photosynthesis, which is how plants convert sunlight into energy. During photosynthesis, plants absorb carbon dioxide from the atmosphere and use it, along with water, to produce glucose and oxygen. Glucose is the primary source of energy for plant growth and is utilized to build various molecules such as cellulose, proteins, and lipids. In addition to being a key component of sugars, carbon is also a vital element in the structure of plant cells. It forms the backbone of complex organic compounds, including carbohydrates, proteins, nucleic acids, and lipids. These compounds are essential for the growth and development of plants, as they are involved in processes like cell division, cell elongation, and the formation of new tissues. Furthermore, carbon is involved in regulating various physiological and metabolic processes in plants. It influences the opening and closing of stomata, the tiny pores on the surface of leaves, which control the uptake of carbon dioxide and the release of oxygen and water vapor. Carbon also affects the production of plant hormones, which are responsible for regulating growth, development, and responses to environmental stimuli. However, excessive carbon dioxide in the atmosphere, resulting from human activities such as burning fossil fuels, can have negative impacts on plants. Elevated levels of carbon dioxide can lead to changes in plant physiology, including increased photosynthesis rates and decreased stomatal conductance. These changes can affect the nutritional quality of plants, alter their interactions with pests and diseases, and disrupt ecosystems. In summary, carbon is essential for the growth and development of plants as it is a key component of sugars, organic compounds, and structural elements in plant cells. It is involved in processes such as photosynthesis, cell division, and the regulation of physiological and metabolic functions. However, changes in atmospheric carbon dioxide levels can have both positive and negative impacts on plants, emphasizing the need for sustainable practices to ensure the future growth and development of plant species.
Q: What is carbon offsetting in the automotive industry?
The automotive industry practices carbon offsetting as a way to counterbalance the greenhouse gas emissions produced by vehicles. Carbon offsetting aims to either neutralize or decrease the overall environmental impact, considering that automobiles contribute significantly to carbon dioxide emissions. Within the automotive industry, there are various approaches to achieve carbon offsetting. One commonly used method involves purchasing carbon credits or offsets. These credits represent a reduction or elimination of carbon dioxide emissions in other areas, such as renewable energy projects or reforestation initiatives. By acquiring these credits, automotive companies or individuals can offset the emissions generated by their vehicles, thus achieving a balance in their carbon footprint. Another way to implement carbon offsetting in the automotive sector is by investing in clean technologies and practices. This can involve the development and implementation of more fuel-efficient engines, hybrid or electric vehicles, or the utilization of alternative fuels. By reducing the amount of carbon dioxide emitted per kilometer driven, automotive companies can offset their overall emissions and contribute to a more environmentally friendly transportation industry. Furthermore, companies within the automotive industry can engage in carbon offsetting by promoting sustainable practices throughout their supply chain. This includes collaborating with suppliers to decrease emissions during the production of vehicle components or adopting energy-efficient manufacturing processes. By addressing emissions throughout the entire lifecycle of a vehicle, from production to disposal, carbon offsetting becomes a comprehensive approach to mitigating the environmental impact of the automotive industry. In conclusion, carbon offsetting in the automotive industry encompasses various strategies and actions taken to compensate for the greenhouse gas emissions produced by vehicles. Whether through the purchase of carbon credits, investment in clean technologies, or the promotion of sustainable practices, carbon offsetting seeks to reduce the overall impact of automobiles on the environment and contribute to a sustainable future.
Q: What materials can be carbonitriding?
Low temperature carbonitriding for high alloy tool steel, high-speed steel tools, etc., in temperature carbonitriding is under great pressure not only in carbon steel wear parts, high temperature carbonitriding is mainly used for medium carbon steel and alloy steel under great pressure.
Q: What's the difference between coal and carbon?
Coke, too, is quite different from coal in physical properties.
Q: What are the consequences of increased carbon emissions on indigenous communities?
Indigenous communities are severely affected by the increased carbon emissions, with their traditional lands and natural resources degrading as one of the most immediate consequences. These emissions contribute to global warming, resulting in higher temperatures, altered weather patterns, and more frequent and intense natural disasters like hurricanes, droughts, and wildfires. These events can cause crop destruction, infrastructure damage, and the displacement of indigenous peoples from their ancestral territories. Furthermore, carbon emissions contribute to air pollution, which disproportionately affects indigenous communities living near industrial facilities and exposes them to higher levels of toxic pollutants. This exposure leads to respiratory illnesses, cardiovascular diseases, and other health problems, exacerbating existing health disparities. Climate change-induced loss of biodiversity also has an impact on indigenous communities, as they rely on traditional knowledge and practices for sustainable resource management. Changes in ecosystems disrupt the availability and abundance of food, water, and medicinal plants, undermining indigenous cultures and traditional livelihoods. Moreover, many indigenous communities heavily depend on natural resources such as fishing, hunting, and agriculture for economic development. However, with increased carbon emissions, these resources become scarcer and less reliable, posing economic challenges and creating financial insecurity for indigenous communities. In addition to the environmental and economic consequences, increased carbon emissions also contribute to the loss of cultural heritage and identity. Indigenous communities have a deep connection to their territories and the natural world, which is threatened by the impacts of climate change. This loss of cultural heritage not only negatively affects indigenous communities but also diminishes the diversity of human knowledge and perspectives, which is detrimental to humanity as a whole. In summary, the consequences of increased carbon emissions on indigenous communities are extensive and severe. They not only undermine their traditional lands, resources, and health but also erode their cultural heritage and identity. Recognizing and addressing these impacts is crucial to ensure the protection and well-being of indigenous communities and to mitigate the effects of climate change globally.
Q: What are the carbon monoxide collection methods?
Carbon monoxide can only be collected by drainage. Carbon monoxide is insoluble in water, carbon monoxide is poisonous, and the density is very close to that of the air, so it can not be collected with exhaust air. It can only be drained. Here are some gas collection methods and the types of gases they target:Downward exhaust air: H2Upward air method: CO2, O2, SO2Drainage: H2, COWater insoluble gases can be drained by gas collectionThe density is not large and does not react with the gas in the air. It can be used for the upper airA gas that is smaller than air and does not react with gas in the air can be used to exhaust air (e.g., H2)As long as the relative molecular mass of the gas is greater than 29, the density is basically larger than that of the air
Q: How does carbon impact the formation of smog?
Carbon plays a significant role in the formation of smog as it is one of the main contributors to the formation of ground-level ozone. When carbon-based pollutants, such as vehicle exhaust and industrial emissions, react with sunlight and other pollutants in the atmosphere, they undergo a complex chemical reaction leading to the production of smog. This smog not only poses health risks to humans but also harms the environment by contributing to climate change and damaging ecosystems.
Q: The difference between graphite and carbon
There are three kinds of carbon allotropes, namely diamond, graphite and amorphous carbon.Graphite is a crystalline mineral of carbonaceous elements, and its crystalline framework is hexagonal layered structure
Q: How are carbon fibers used in manufacturing?
Carbon fibers are used in manufacturing for their exceptional strength, light weight, and high stiffness properties. They are commonly used as reinforcement materials in various industries such as aerospace, automotive, sports equipment, and wind energy. Carbon fibers are incorporated into composites to enhance the strength and durability of products, making them ideal for applications where weight reduction and structural integrity are crucial.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches