Carbon Aditive F.C. 92%min
- Loading Port:
- China Main Port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
1.Features:
Carbon Additive also called Calcined anthracite Coal, Gas Calcined Anthracite Coal, Carbon Raiser.
The main raw material is Ningxia unique high quality anthracite, with characteristic of low ash and low sulfur. Carbon additive has two main uses, namely as the fuel and additive. When being used as the carbon additive of steel-smelting, and casting, the fixed carbon may achieve above 95%.
2.Application:
It may substitute massively refinery coke or the stone grinds. Meanwhile its cost is much less than the refinery coke and the stone grinds. Carbon Additive may also use as the fuel, for its calorific value may achieve above 9386K/KG. It may substitute burnt carbon massively. The burnt carbon exportation needs the quota; therefore the carburizing agent price superiority is similarly obvious.
3.Specifications:Chemical Composition(%) | ||||
F.C. | Ash | V.M. | S | Moisture |
%(min) | %(max) | |||
92 | 7.0 | 1.2 | 0.30 | 1.0 |
0.5-3mm, 1-4mm,0.5-4mm,1-3mm, 90%min,or at customer’s option; | ||||
In 1000kgs big bag; or 1200kgs big bag; or 25kgs small bag, then into 1000kgs big bag; or 25kgs or 50kgs small bag, then put into containers directly;or at customer’s option; |
- Q: What are carbon sinks?
- Carbon sinks are natural or artificial reservoirs that absorb and store carbon dioxide from the atmosphere. They play a crucial role in mitigating climate change by reducing the concentration of greenhouse gases in the atmosphere. Carbon sinks can be found in various forms, including forests, oceans, wetlands, and soil. Forests are the largest and most well-known carbon sinks. Through the process of photosynthesis, trees absorb carbon dioxide and convert it into oxygen, storing the carbon in their trunks, branches, and roots. Oceans are also significant carbon sinks, as they absorb about a quarter of the carbon dioxide emitted by human activities. Algae, phytoplankton, and other marine organisms capture carbon through photosynthesis and convert it into biomass. Wetlands, such as marshes and swamps, are another important carbon sink. These areas store enormous amounts of carbon in their vegetation and soil, preventing it from being released back into the atmosphere. Additionally, soil acts as a carbon sink by absorbing and storing carbon through the decomposition of organic matter and the action of microorganisms. Artificial carbon sinks, like carbon capture and storage (CCS) technologies, are being developed to further combat climate change. CCS involves capturing carbon dioxide emissions from power plants and industrial facilities and storing them underground or repurposing them for other uses. While these technologies are still in the early stages, they have the potential to significantly reduce carbon emissions and help stabilize the climate. Overall, carbon sinks are essential for maintaining the balance of carbon dioxide in the atmosphere and preventing its accumulation, which would contribute to global warming. Preserving and restoring natural carbon sinks, such as forests and wetlands, is crucial for mitigating climate change, while developing and implementing artificial carbon sinks can further aid in reducing greenhouse gas emissions.
- Q: How does carbon affect the formation of permafrost thawing?
- Carbon affects the formation of permafrost thawing by accelerating the process through its release into the atmosphere. As permafrost thaws, it exposes organic matter that has been frozen for centuries, releasing carbon dioxide and methane, both potent greenhouse gases. This additional carbon in the atmosphere further enhances the warming effect, leading to a positive feedback loop where increased temperatures cause more permafrost thawing, releasing more carbon, and exacerbating climate change.
- Q: 15CrMo seamless steel tube and carbon plate welding fracture what is the reason?
- That's the problem of too much stress in the welding! 15CrMo material after quenching is very brittle, local high temperature welding, then there is no insulation measures, fast cooling speed caused by the welding part of a slight quenching appear, so the stress concentration caused by cold cracking!It is recommended that the 15CrMo pipe be heated to 150 degrees before welding! Pay attention to heat preservation after welding!If the heat treatment process needs to be welded, the heating rate is 200 degrees /h, rise to 715, holding 1 hours and 15 minutes, the cooling rate is 100 degrees /h, and the air cooling is down to 300 degrees centigrade.
- Q: How is carbon involved in the metabolism of carbohydrates, proteins, and fats?
- Carbon is a fundamental element involved in the metabolism of carbohydrates, proteins, and fats. In all three macronutrients, carbon atoms play a crucial role in the formation of their molecular structures. In carbohydrates, carbon is present in the form of glucose, which is the primary source of energy for the body. Through a process called glycolysis, glucose is broken down into smaller molecules, generating ATP (adenosine triphosphate) for cellular energy. The carbon atoms in glucose are rearranged and converted into intermediate compounds that are further used in other metabolic pathways. Proteins, on the other hand, are complex molecules composed of amino acids, each containing a carbon atom. During protein metabolism, carbon atoms participate in various reactions, such as deamination and transamination, which allow for the synthesis of new proteins or the breakdown of existing ones. Carbon atoms also contribute to the formation of peptide bonds that link amino acids together, forming the backbone of proteins. In the metabolism of fats or lipids, carbon is predominantly found in the fatty acid chains. These carbon chains provide a high-energy fuel source, as they can be broken down through a process called beta-oxidation. Carbon atoms from fatty acids are sequentially cleaved, producing acetyl-CoA, which enters the citric acid cycle (also known as the Krebs cycle) to generate ATP. Additionally, carbon atoms from fatty acids can be used for the synthesis of other molecules, such as cholesterol and hormones. Overall, carbon is an essential component in the metabolism of carbohydrates, proteins, and fats. Its involvement in these metabolic processes allows for the production of energy, the synthesis and breakdown of essential molecules, and the regulation of various physiological functions.
- Q: How is carbon used in the medical field?
- Carbon is used in the medical field in various ways. It is commonly used in medical imaging techniques such as positron emission tomography (PET) scans, where radioactive carbon isotopes are used to track the movement and metabolism of substances within the body. Carbon is also utilized in the production of medical implants and devices, including artificial heart valves, pacemakers, and prosthetics. Additionally, carbon-based materials are being researched for drug delivery systems, tissue engineering, and as components of medical sensors and electrodes.
- Q: What are the impacts of carbon emissions on water scarcity?
- Water scarcity is significantly impacted by carbon emissions. One way in which carbon emissions contribute to water scarcity is through climate change. The presence of increased carbon dioxide in the atmosphere causes heat to become trapped, resulting in global warming and changes in weather patterns. These altered climate patterns can lead to changes in rainfall, including more frequent droughts and decreased rainfall in certain areas. The consequences of droughts can be particularly severe for water availability. When there is a lack of rainfall, rivers, lakes, and reservoirs can dry up, leaving communities without access to fresh water sources. This scarcity of water affects drinking water, agriculture, and industrial use, impacting both human populations and ecosystems. Moreover, carbon emissions also affect water scarcity by impacting the melting of glaciers and snowpack in mountainous regions. These areas serve as natural water reservoirs, releasing water slowly throughout the year and providing a reliable source of freshwater downstream. However, as temperatures rise due to carbon emissions, glaciers and snowpack melt at a faster rate. This leads to increased water runoff, resulting in flooding and a decrease in water availability during dry seasons. Carbon emissions also indirectly contribute to water scarcity through their influence on sea-level rise. The increased temperatures caused by carbon emissions cause polar ice caps to melt, which in turn raises sea levels. Consequently, saltwater infiltrates coastal aquifers, making the groundwater brackish or undrinkable. This intrusion contaminates freshwater sources, reducing their availability and exacerbating water scarcity. Additionally, carbon emissions contribute to ocean acidification, which harms marine ecosystems. This, in turn, affects the availability of seafood resources, which are an essential source of protein for many people worldwide. The decline in seafood availability puts additional pressure on freshwater resources as it may lead to increased reliance on agriculture, which requires substantial amounts of water. To summarize, carbon emissions have significant impacts on water scarcity. Climate change resulting from carbon emissions alters precipitation patterns, leading to droughts and reduced rainfall. Carbon emissions also accelerate the melting of glaciers and snowpack, reducing water availability in mountainous regions. Furthermore, carbon emissions contribute to sea-level rise, resulting in saltwater intrusion into freshwater sources. These impacts emphasize the urgent need to reduce carbon emissions and mitigate the effects of climate change to ensure the availability of freshwater resources for present and future generations.
- Q: What are fossil fuels and how are they formed?
- Fossil fuels, derived from ancient plants and animals, are natural resources utilized by humans for centuries as non-renewable sources of energy. Coal, oil, and natural gas comprise the three primary types of these fuels. The genesis of fossil fuels commences with organic matter sourced from plants and animals. Over millions of years, this organic material becomes deeply buried within the Earth's crust. Through the accumulation of sediment layers, the organic matter experiences increased pressure and heat, resulting in the process of fossilization. Regarding coal, the organic matter primarily consists of compacted and heated plant material. As the pressure and temperature rise, the plant material undergoes a gradual chemical transformation, eventually becoming coal. The formation of oil and natural gas follows a slightly different path. It originates from the remains of minuscule marine microorganisms, such as plankton, which settle at the ocean floor. Over time, these organic materials become buried beneath sediment layers, where they endure immense heat and pressure. Under these conditions, the organic matter undergoes a conversion into a mixture of hydrocarbons, serving as the primary constituent of oil and natural gas. Subsequently, the oil and gas migrate through porous rocks until they become trapped by impermeable layers, giving rise to oil or gas reservoirs. Overall, the formation of fossil fuels constitutes a gradual geologic process taking millions of years. It necessitates specific conditions of heat, pressure, and burial to convert organic matter into coal, oil, or natural gas. Due to their limited availability and the environmental consequences associated with their combustion, there is an increasing emphasis on transitioning towards renewable energy sources as a more sustainable alternative.
- Q: How does carbon contribute to the strength of alloys?
- Carbon contributes to the strength of alloys by forming interstitial solid solutions with metals, which increases the hardness and strength of the material. The carbon atoms occupy the spaces between the metal atoms, creating lattice distortions and enhancing the overall strength of the alloy. Additionally, carbon can also form compounds with metals, such as carbides, which further improve the hardness and wear resistance of alloys.
- Q: What is the atomic weight of carbon?
- The atomic weight of carbon is approximately 12 atomic mass units.
- Q: What are the main sources of carbon emissions?
- The main sources of carbon emissions include burning fossil fuels such as coal, oil, and natural gas for electricity, transportation, and industrial processes. Deforestation and land-use changes also contribute to carbon emissions by releasing stored carbon into the atmosphere.
Send your message to us
Carbon Aditive F.C. 92%min
- Loading Port:
- China Main Port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches