• Low Sulphur Calcined Petroleum Coke S 0.7 System 1
  • Low Sulphur Calcined Petroleum Coke S 0.7 System 2
  • Low Sulphur Calcined Petroleum Coke S 0.7 System 3
Low Sulphur Calcined Petroleum Coke S 0.7

Low Sulphur Calcined Petroleum Coke S 0.7

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
11 m.t.
Supply Capability:
10000000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Structure of Calcined Petroleum Coke Description

Calcined Petroleum Coke is made from raw petroleum coke,which is calcined in furnace at a high temperature(1200-1300℃).CPC/Calcined Petroleum Coke is widely used in steelmaking,castings manufacture and other metallurgical industry as a kind of recarburizer because of its high fixed carbon content,low sulfur content and high absorb rate.Besides,it is also a best kind of raw materials for producing artifical graphite(GPC/Graphitized Petroleum Coke) under the graphitizing temperature(2800℃).

2.Main Features of the Calcined Petroleum Coke

High-purity graphitized petroleum coke is made from high quality petroleum coke under a temperature of 2,500-3,500°C. As a high-purity carbon material, it has characteristics of high fixed carbon content, low sulfur, low ash, low porosity etc.It can be used as carbon raiser (Recarburizer) to produce high quality steel,cast iron and alloy.It can also be used in plastic and rubber as an additive. 

3. Calcined Petroleum Coke Images

 

Low Sulphur Calcined Petroleum Coke S 0.7

Low Sulphur Calcined Petroleum Coke S 0.7

 

 

 

4. Calcined Petroleum Coke Specification

 

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

98.5MIN

98.5% MIN

ASH %

0.5 MAX

0.8MAX

V.M.%

0.7 MAX

0.7 MAX

SULFUR %

0.5 MAX

0.7 MAX

MOISTURE %

0.5MAX

0.5MAX

SIZE

0-5MM OR AS REQUEST

 

5.FAQ of Calcined Petroleum Coke

1). Q: Are you a factory or trading company?

A: We are a factory.

2). Q: Where is your factory located? How can I visit there?

A: Our factory is located in ShanXi, HeNan, China. You are warmly welcomed to visit us!

3). Q: How can I get some samples?

A: Please connect me for samples

4). Q: Can the price be cheaper?

A: Of course, you will be offered a good discount for big amount.

 

 

 

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

98.5MIN

98.5% MIN

ASH %

0.5 MAX

0.8MAX

V.M.%

0.7 MAX

0.7 MAX

SULFUR %

0.5 MAX

0.7 MAX

MOISTURE %

0.5MAX

0.5MAX

SIZE

0-5MM OR AS REQUEST


 

 


Q: Method for making carbon fiber board
Our carbon fiber board adopts autoclave molding process, the product quality is good, no white spots, bubbles, lines and other defects, factory direct supply in bulk, at the same time to provide CAD customized processing services.Autoclave molding technology has the following remarkable advantages: high volume of fiber components, good quality stability, simple molding process
Q: What is carbon neutral shipping?
Carbon neutral shipping refers to the concept of offsetting or balancing out the carbon emissions produced during the transportation of goods by sea, air, or land. It aims to minimize the negative impact of shipping on the environment and climate change. Shipping contributes to greenhouse gas emissions through the burning of fossil fuels, primarily through the use of heavy fuel oil in ships' engines. This results in the release of carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter into the atmosphere, contributing to global warming and air pollution. To achieve carbon neutrality in shipping, various strategies can be employed. One of the most common approaches is the use of carbon offsetting. This involves investing in projects that reduce or remove an equivalent amount of CO2 from the atmosphere, such as reforestation, renewable energy projects, or methane capture initiatives. By supporting these projects, the carbon emissions from shipping are balanced out, resulting in a net-zero carbon footprint. Another method to achieve carbon neutrality is through the use of alternative fuels and energy-efficient technologies. For instance, biofuels, hydrogen, and electric propulsion systems can significantly reduce or eliminate carbon emissions from ships during their operation. Additionally, optimizing shipping routes and vessel design can also contribute to reducing fuel consumption and emissions. Furthermore, collaboration between shipping companies, governments, and international organizations is essential to promote carbon neutral shipping. This includes setting industry-wide emission reduction targets, implementing stricter regulations, and providing incentives for sustainable practices. While carbon neutral shipping is a positive step towards mitigating climate change, it is important to acknowledge that it should be seen as a transitional measure towards achieving a fully decarbonized shipping sector. Continued research and development in clean technologies, along with the adoption of sustainable practices, are crucial to achieving long-term environmental sustainability in the shipping industry.
Q: What are the consequences of increased carbon emissions on economic stability?
Economic stability is significantly impacted by the increase in carbon emissions. Climate change worsens as a result, resulting in more frequent and severe natural disasters like hurricanes, floods, and wildfires. These events cause immense economic damage, including infrastructure destruction, property loss, and supply chain disruption. Moreover, the economic implications of climate change, driven by the rise in carbon emissions, are long-term. Coastal cities and industries are threatened by rising sea levels, leading to potential population displacement and valuable asset loss. Agricultural productivity is affected by extreme heatwaves and droughts, impacting food security and causing price increases. These climate-related disruptions can destabilize economies, especially in vulnerable regions highly dependent on agriculture or tourism. Furthermore, substantial financial investments are required for climate change mitigation and adaptation efforts, such as transitioning to cleaner energy sources and implementing climate policies. This strains government budgets and diverts resources from other socio-economic priorities, potentially resulting in reduced funding for education, healthcare, and infrastructure development. Additionally, increased carbon emissions have economic consequences beyond immediate climate-related impacts. The reliance on fossil fuels as the primary energy source contributes to volatile oil prices, which can disrupt global markets and affect economic stability. As the world moves towards a low-carbon economy, industries heavily reliant on fossil fuels may face significant challenges, leading to job losses and economic upheaval. To summarize, the increase in carbon emissions has extensive effects on economic stability. Climate change causes more frequent and severe natural disasters, resulting in significant economic damage. Responding to climate change through mitigation and adaptation efforts strains government budgets and diverts resources from other critical sectors. Moreover, the reliance on fossil fuels poses long-term risks to industries tied to these resources. It is essential to address carbon emissions to safeguard economic stability and foster sustainable growth.
Q: How does carbon affect the quality of indoor air?
Carbon can have a significant impact on the quality of indoor air as it is emitted from various sources such as burning fossil fuels, cooking, and smoking. High levels of carbon can lead to poor air quality, causing symptoms like headaches, dizziness, and fatigue. Additionally, carbon monoxide, a toxic gas produced by incomplete combustion, can be lethal in enclosed spaces. Therefore, it is crucial to properly ventilate and monitor indoor areas to mitigate the negative effects of carbon on indoor air quality.
Q: Is aluminum alloy expensive or high carbon steel expensive?
Aluminum alloy of course, a little longer, and will be much lighter.Generally, aluminum alloy frames are much more expensive than those of high carbon steel.
Q: Does anyone know what the definition of carbon storage is in ecology? Thank you
If there is no clear definition of books on carbon storage in the understanding of ecology of the individual usually refers to the separation of gaseous carbon dioxide from the atmosphere, through the process of ecology carbon fixed, this process mainly refers to the plants convert carbon dioxide into carbohydrates.In addition, there is now another implication: carbon stripping technology will be used to collect carbon dioxide from human emissions into the air separation of the ground floor storage.
Q: What is carbon neutral energy?
Carbon neutral energy refers to energy sources and systems that do not produce any net carbon dioxide emissions, meaning they have a neutral impact on the environment in terms of greenhouse gas emissions. This can be achieved through various methods, such as using renewable energy sources like solar, wind, or hydro power, or by implementing carbon capture and storage technologies to offset any emissions produced. The goal of carbon neutral energy is to mitigate climate change and promote sustainable energy practices.
Q: How do human activities contribute to carbon emissions?
Carbon emissions are contributed to by human activities in several ways. One of the main sources of carbon dioxide emissions is the burning of fossil fuels for electricity, transportation, and industry. When coal, oil, or natural gas is burned, carbon is released into the atmosphere. Additionally, carbon emissions are also caused by deforestation and changes in land use. Trees play a critical role in absorbing carbon dioxide, so when forests are cleared for agriculture or urbanization, the stored carbon is released back into the atmosphere. Furthermore, carbon emissions are released through industrial processes such as cement production and chemical manufacturing. Lastly, methane, a powerful greenhouse gas that contributes to global warming, can be produced through human activities like agriculture and livestock farming. In conclusion, our reliance on fossil fuels, deforestation, industrial processes, and certain agricultural practices all contribute to carbon emissions, worsening the problem of climate change.
Q: What is the melting point of carbon?
The melting point of carbon depends on the form in which it is found. Pure carbon exists in multiple forms, including graphite and diamond. Graphite has a high melting point of around 3,600 degrees Celsius (6,500 degrees Fahrenheit), while diamond has an even higher melting point of approximately 3,827 degrees Celsius (6,920 degrees Fahrenheit). These high melting points are a result of the strong covalent bonds between carbon atoms in these structures. However, it is important to note that carbon can also exist in amorphous forms, such as coal or charcoal, which do not have a specific melting point as they undergo a gradual decomposition process when heated.
Q: How does carbon impact the availability of clean energy solutions?
Carbon has a significant impact on the availability of clean energy solutions. Carbon emissions from burning fossil fuels and other human activities are the main contributor to climate change, which poses a serious threat to the environment and human well-being. As a result, there is an urgent need to transition to cleaner energy sources that produce lower carbon emissions. Clean energy solutions, such as renewable energy technologies like solar and wind power, have the potential to reduce carbon emissions significantly. These sources of energy generate electricity without burning fossil fuels, thus producing little to no carbon emissions. By replacing traditional energy sources with clean ones, we can reduce our carbon footprint and mitigate climate change. However, the availability and scalability of clean energy solutions are impacted by carbon emissions in several ways. First, the continued reliance on carbon-intensive energy sources, such as coal and oil, hinders the rapid adoption of clean energy technologies. The infrastructure and investments in fossil fuel-based energy systems make it challenging to shift towards clean alternatives. Secondly, carbon emissions contribute to global warming, which affects the availability and efficiency of certain clean energy solutions. For example, rising temperatures can reduce the efficiency of solar panels and impact the output of hydropower due to changing rainfall patterns. This highlights the importance of mitigating carbon emissions to ensure the long-term viability and effectiveness of clean energy technologies. Furthermore, carbon emissions have economic implications that can impact the availability of clean energy solutions. Governments and policymakers play a crucial role in incentivizing the adoption of clean energy through regulations, subsidies, and carbon pricing mechanisms. These policies can influence the affordability and accessibility of clean energy technologies, making them more attractive to investors and consumers. In conclusion, carbon emissions have a profound impact on the availability of clean energy solutions. By reducing carbon emissions and transitioning to cleaner energy sources, we can mitigate climate change, improve the efficiency of clean energy technologies, and create a more sustainable future. It is essential for governments, businesses, and individuals to prioritize the development and adoption of clean energy solutions to ensure a cleaner and healthier planet for future generations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords