• Recarburizer 1-3MM 93% FC Carburant Carbon Additives System 1
  • Recarburizer 1-3MM 93% FC Carburant Carbon Additives System 2
  • Recarburizer 1-3MM 93% FC Carburant Carbon Additives System 3
  • Recarburizer 1-3MM 93% FC Carburant Carbon Additives System 4
Recarburizer 1-3MM 93% FC Carburant Carbon Additives

Recarburizer 1-3MM 93% FC Carburant Carbon Additives

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications Of Recarburizer 93% FC


- High C content;

- Low S and N content;

- High abosorbility;

Recarburizer(Carburant, carbon additives) with high quality, 0-20mm for metal casting foundry and steel plant, low nitrogen content and high carbon content, min 90% carbon content, at the same time as your requirements with no problem. The best media for adding carbon.



Technical Data Sheet of Recarburizer 93% FC


Fixed carbon

≥ 93%

Ash content

≤ 5.0%

Vol . Matter

≤ 1.0%

Sulphur content

≤ 0.3%

Moisture content 

≤ 0.3%

Size 

0-20mm or as your requirement.

Packing

- 25kg bag 

- One tone bags, Jumbo bag

Delivery time 

In 5-10 working days or depends on the order quantity

Supply ability

50000  Metric Ton Per Month

Payment terms

L/C at sight or T/T

 

Available Size: 0,1-4mm, 1-5mm, 3-8mm, 8-20mm (as per customers’ requirements)          

Usage: widely used in casting foundry, steel-making, metallurgical Etc.


 

Applications of  Recarburizer 93% FC


Mainly used in steel making in electrical stove, screening water, ship building sandblast to remove rust,producing carbon materials Etc.

 


Characteristics of  Recarburizer 93% FC


- Particle size, porosity, absorption speed stable

- High degree of carbonize product, increase the original nuclear capability in the shape of liquid iron. 

- Increased in the inoclation of nodular cast iron ball ink quantiyt, increase in th electric furnace iron graphit crystal nucleus. 

- Excellent performance, stable.

 


Q: How does carbon dating work?
Carbon dating is a scientific technique used to determine the age of organic materials, such as plants, animals, and human remains. It relies on the fact that carbon-14, a radioactive isotope of carbon, is constantly formed in the atmosphere by cosmic rays. While carbon-14 is present in the atmosphere, it is also absorbed by living organisms through photosynthesis or consumption of other organisms. The ratio of carbon-14 to stable carbon isotopes (carbon-12 and carbon-13) in the atmosphere remains relatively constant, as living organisms maintain a constant level of carbon-14 by exchanging it with the atmosphere through respiration or consumption. However, when an organism dies, it no longer takes in carbon-14, and the existing carbon-14 begins to decay at a predictable rate. Carbon-14 has a half-life of approximately 5,730 years, meaning that after this time, half of the carbon-14 in a sample will have decayed into nitrogen-14. By measuring the remaining carbon-14 in a sample, scientists can calculate how long it has been since the organism died. The process of carbon dating involves several steps. First, a sample is collected from the organic material to be dated, which can be anything from wood to bones to textiles. The sample is then prepared for analysis by removing any contaminants and converting it into a form suitable for measurement. Next, the sample is exposed to a high-energy radiation source, such as a particle accelerator or a nuclear reactor, which causes the carbon atoms in the sample to release small bursts of energy known as beta particles. These particles are detected and measured by sensitive instruments, allowing scientists to determine the amount of carbon-14 remaining in the sample. Finally, this information is used to calculate the age of the organic material. By comparing the ratio of carbon-14 to carbon-12 in the sample to the known ratio in the atmosphere, scientists can estimate the time elapsed since the organism died. Carbon dating is an invaluable tool for archaeologists, paleontologists, and geologists, as it allows them to accurately determine the ages of ancient artifacts, fossils, and geological formations. It has revolutionized our understanding of human history and the natural world, providing us with invaluable insights into the past.
Q: What is carbon nanoelectrode?
Carbon-based materials, usually in the form of nanotubes or nanowires, are used to create carbon nanoelectrodes. These electrodes are incredibly small, with diameters on the nanoscale, typically ranging from a few to a few hundred nanometers. The unique properties of carbon nanoelectrodes make them highly desirable for various applications in electrochemistry. Their small size provides a large surface area to volume ratio, resulting in improved sensitivity and electrochemical performance. In addition, carbon nanoelectrodes have excellent electrical conductivity and mechanical strength, making them ideal for miniaturized electronic devices and sensors. They can be easily integrated into platforms like microfluidic systems or biosensors, enabling efficient and accurate detection of chemical or biological substances. Furthermore, carbon nanoelectrodes have demonstrated great potential in energy storage devices, such as supercapacitors and batteries. Their high electrical conductivity and large surface area facilitate rapid charge and discharge rates. Overall, carbon nanoelectrodes are an exciting advancement in the field of nanotechnology. They offer unique properties and unparalleled performance for various applications in electronics, sensing, and energy storage.
Q: How does carbon impact the stability of ecosystems?
Carbon is a crucial element that plays a significant role in the stability of ecosystems. It impacts ecosystems in various ways, both directly and indirectly. Firstly, carbon is an essential component of all living organisms. It is a key building block of organic molecules such as carbohydrates, proteins, and lipids, which are vital for the growth and development of plants and animals. Carbon is the primary source of energy for organisms through the process of photosynthesis, where plants convert carbon dioxide into glucose. This energy is then passed on through the food chain, sustaining the entire ecosystem. Therefore, the availability of carbon directly influences the productivity and stability of ecosystems. Furthermore, carbon dioxide (CO2) is a greenhouse gas that is naturally present in the Earth's atmosphere. It plays a crucial role in regulating the Earth's temperature by trapping heat and preventing it from escaping into space. However, human activities, particularly the burning of fossil fuels, have significantly increased the concentration of CO2 in the atmosphere, leading to a phenomenon known as global warming. This rapid increase in carbon emissions has resulted in climate change, which has severe consequences for ecosystems. Climate change impacts ecosystems in various ways. Rising temperatures affect the distribution and behavior of species, altering their habitats and migration patterns. As a result, some species may struggle to adapt, leading to imbalances in predator-prey relationships and disruptions in the overall biodiversity of ecosystems. Additionally, climate change can cause extreme weather events such as hurricanes, droughts, and floods, which can have devastating effects on ecosystems. These events can disrupt the availability of resources, destroy habitats, and even lead to the extinction of certain species. Furthermore, increased carbon dioxide levels in the atmosphere have also led to ocean acidification. When CO2 dissolves in seawater, it forms carbonic acid, which lowers the pH of the ocean. This acidification has adverse effects on marine organisms such as corals, shellfish, and other calcifying organisms that rely on calcium carbonate to build their shells or skeletons. The reduced availability of carbonate ions in the ocean makes it harder for these organisms to form and maintain their structures, ultimately impacting the stability of marine ecosystems. In conclusion, carbon has a significant impact on the stability of ecosystems. Its availability and concentration directly affect the productivity and energy flow within ecosystems. Moreover, human-induced carbon emissions have led to climate change and ocean acidification, which pose severe threats to the balance and functioning of ecosystems. Therefore, understanding and managing carbon levels in the environment is crucial for maintaining the stability and sustainability of ecosystems.
Q: How does carbon impact ocean acidity?
Carbon impacts ocean acidity through a process called ocean acidification. When carbon dioxide (CO2) from the atmosphere is absorbed by seawater, it reacts with water molecules to form carbonic acid. This acidification process lowers the pH levels of the ocean, making it more acidic. The primary source of carbon dioxide in the atmosphere is human activities such as burning fossil fuels, deforestation, and industrial processes. As the concentration of CO2 increases in the atmosphere due to these activities, more and more of it is absorbed by the oceans. The increase in acidity has several detrimental effects on marine life. Many organisms that have calcium carbonate shells, such as coral reefs, shellfish, and some plankton species, are particularly vulnerable to ocean acidification. The increased acidity makes it harder for these organisms to build and maintain their shells, leading to reduced growth rates and increased mortality. Ocean acidification also affects the entire marine food web. It disrupts the balance between predators and prey, as some species of plankton are less able to develop and survive in acidic conditions. This can have cascading effects on the entire ecosystem, impacting fish populations, marine mammals, and ultimately even humans who rely on seafood for sustenance. Additionally, ocean acidification can have significant economic impacts. Commercial fisheries and tourism industries that depend on healthy marine ecosystems can suffer due to the decline in fish populations and the degradation of coral reefs. To mitigate the impacts of carbon on ocean acidity, it is crucial to reduce carbon dioxide emissions and transition to cleaner and more sustainable energy sources. Taking steps to protect and restore marine ecosystems, such as creating marine protected areas and implementing sustainable fishing practices, can also help to mitigate the effects of ocean acidification.
Q: What is the difference between soil organic matter and soil organic carbon?
Usually we measured is organic carbon, and then multiplied by 1.724 is organic matter.
Q: What are the effects of carbon emissions on the stability of alpine ecosystems?
The stability of alpine ecosystems is significantly and extensively affected by carbon emissions. Carbon emissions, mainly in the form of carbon dioxide, contribute to the greenhouse effect and subsequent climate change, thereby causing a series of impacts that directly influence the stability of alpine ecosystems. One of the most noticeable consequences is the rise in global temperatures. With increasing temperatures, glaciers and snow caps in alpine regions melt at accelerated rates. This has a profound impact on the availability of freshwater resources since alpine regions often serve as the origin of major rivers and lakes. Decreased water availability not only affects the survival of plant and animal species but also has consequences for human populations that rely on these water sources for agriculture, drinking water, and hydropower generation. Another result of carbon emissions is the alteration of precipitation patterns. Climate change disrupts the balance between rainfall and snowfall in alpine ecosystems, leading to more frequent and intense droughts or rainfall events. Such changes in precipitation patterns can result in soil erosion, landslides, and the overall instability of alpine terrain. This poses a threat to the survival of alpine flora and fauna, as well as the loss of crucial habitats and biodiversity. Furthermore, carbon emissions contribute to the acidification of alpine lakes and rivers. Increased carbon dioxide in the atmosphere dissolves in water bodies, forming carbonic acid. This acidification negatively affects aquatic organisms, such as fish and amphibians, impairing their reproductive abilities, altering their behavior, and even causing mortality. It also disrupts the delicate balance of alpine freshwater ecosystems, leading to a decrease in species diversity and ecological resilience. Lastly, carbon emissions can indirectly impact alpine ecosystems through the expansion of invasive species. Climate change creates favorable conditions for the migration of non-native plant and animal species to higher elevations. These invasive species can outcompete native flora and fauna, disrupt ecological interactions, and ultimately lead to the displacement or extinction of native species. This disrupts the natural balance of alpine ecosystems and compromises their stability. In conclusion, the stability of alpine ecosystems is profoundly affected by carbon emissions. These emissions contribute to the melting of glaciers, alteration of precipitation patterns, acidification of water bodies, and the spread of invasive species. These impacts disrupt the balance of alpine ecosystems, leading to the loss of biodiversity, degradation of habitats, and reduced availability of freshwater resources. Urgent action to mitigate carbon emissions is crucial to preserve the stability and functioning of these fragile ecosystems.
Q: What is carbon neutral construction?
Carbon neutral construction refers to the process of designing, constructing, and maintaining buildings in a way that minimizes their carbon footprint and offsets any remaining emissions. This involves using sustainable materials, implementing energy-efficient systems, and utilizing renewable energy sources to achieve net-zero carbon emissions throughout the building's lifecycle.
Q: How is carbon dioxide released into the atmosphere?
Carbon dioxide is released into the atmosphere through various natural and human activities. Natural processes like volcanic eruptions and the decomposition of organic matter release carbon dioxide. However, human activities such as burning fossil fuels, deforestation, and industrial processes are the primary sources of carbon dioxide emissions into the atmosphere.
Q: Carbon Finance: Carbon Finance
The "Framework Convention" is the world's first comprehensive control of carbon dioxide and other greenhouse gas emissions, the International Convention for the human economic and social adverse effects in response to global warming, a basic framework is also the international society for international cooperation in tackling global climate change on the issue. According to statistics, 191 countries have ratified the Convention at present. These countries are called parties to the convention. The parties to the Convention have made many pledges aimed at addressing climate change. Each party must submit periodic reports, which contain the greenhouse gas emission information of the contracting parties and indicate plans and specific measures for the implementation of the convention. The Convention came into force in March 1994 and laid the legal foundation for international cooperation in dealing with climate change. It was an authoritative, universal and comprehensive international framework. The Convention consists of a preamble and 26 main texts. The Convention is legally binding to control emissions of carbon dioxide, methane and other greenhouse gases in the atmosphere and stabilize the concentration of greenhouse gases from the destruction of the climate system. The Convention differs from the developed countries and developing countries in terms of their obligations and procedures for fulfilling their obligations.
Q: How is carbon used in the production of fuels?
Carbon is a critical element in the production of fuels, as it is the main component of fossil fuels such as coal, oil, and natural gas. These fuels are formed from the organic remains of plants and animals that lived millions of years ago. The process of carbonization or carbonization involves subjecting these organic materials to high pressure and temperature over a long period, which transforms them into hydrocarbon-rich substances. Coal, for example, is primarily composed of carbon, along with small amounts of other elements. When coal is burned, this carbon reacts with oxygen, releasing energy in the form of heat. This heat can then be utilized to produce steam, which drives turbines to generate electricity or to power engines in various industries. Similarly, oil and natural gas, which are also predominantly composed of carbon, are extracted from underground reservoirs. These hydrocarbons can be processed through refining to produce various types of fuels, such as gasoline, diesel, and jet fuel. The combustion of these fuels in engines or power plants allows for energy release, enabling transportation and the generation of electricity. In addition to fossil fuels, carbon is also used in the production of alternative fuels like biofuels. Biofuels are produced from renewable sources such as plants, algae, or agricultural waste. The carbon contained in these organic materials can be converted into ethanol or biodiesel through processes like fermentation or transesterification, respectively. These biofuels can then be used as substitutes for conventional fossil fuels, reducing greenhouse gas emissions and dependence on non-renewable resources. Overall, carbon is an essential component in the production of fuels, whether derived from fossil fuels or renewable sources. Its combustion releases energy, which is harnessed for various purposes, including electricity generation, transportation, and industrial processes. However, it is important to explore and adopt sustainable alternatives to fossil fuels, such as biofuels and renewable energy sources, to mitigate the negative environmental impacts associated with carbon emissions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords