Calcined Peroleum Coke with FC 98.5% S 0.5%max
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 2000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Packaging & Delivery
25kg paper bag into 1t weaving bag 5kg, 10kg and 20kg weaving bag into 1t weaving bag 25kg weaving bag put on pallet covered with entanglement wrap product direct into packing bag 25kg paper bag put on pallet covered with entanglement Wrap 25kg weaving bag into 1t weaving bag
Calcined Petroleum Coke is a critical ingredient in the production of Metallurgy and chemical industrial ,it can increase the used quantity of Scrap steel and reduce the quantity of Scrap iron, or use no Scrap iron at all, the calcined petroleum coke has follow properties: high absorptive character, no residue will be left and save production cost.
Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant.
General Specification of Calcined Anthracite:
FC % | 98.5 | 98.5 | 98.5 | 99 |
ASH % | 0.8 | 0.8 | 0.8 | 0.5 |
V.M. % | 0.7 | 0.7 | 0.7 | 0.5 |
S % | 0.5 | 0.55 | 0.7 | 0.5 |
MOISTURE % | 0.5 | 0.5 | 0.5 | 0.5 |
Picture of CPC/ Calcined Petroleum Coke
- Q: Method for making carbon fiber board
- Method for making carbon fiber sheet:1, first determine the thickness of the plate to be made2 calculate the required number of plies according to the thickness3, and then according to 0 degrees, 45 degrees, 90 degrees, -45 degrees in the order of stacking.4, and then molding it!Now carbon fiber board, in fact, many in the middle are entrained with some glass fiber cloth, of course, there are all carbon, a little more expensive!
- Q: What are the different types of carbon fibers?
- There are several different types of carbon fibers, each with its own unique characteristics and properties. Some of the most common types include: 1. PAN-based carbon fibers: These are the most commonly used carbon fibers and are made from polyacrylonitrile (PAN) precursor materials. They offer a good balance between strength, stiffness, and cost-effectiveness. 2. Pitch-based carbon fibers: These fibers are made from coal tar pitch or petroleum pitch precursor materials. They typically have a higher density and higher thermal conductivity compared to PAN-based fibers, making them suitable for applications requiring high thermal stability. 3. Rayon-based carbon fibers: These fibers are produced from regenerated cellulose, commonly known as rayon. They have a lower modulus and strength compared to PAN-based fibers but offer excellent electrical conductivity and are often used in applications such as conductive textiles and electrical components. 4. Mesophase pitch-based carbon fibers: These fibers are made from a liquid crystalline precursor material called mesophase pitch. They have a high modulus and excellent thermal conductivity, making them ideal for applications requiring high strength and heat resistance, such as aerospace and automotive industries. 5. Vapor-grown carbon fibers (VGCFs): These fibers are produced by the chemical vapor deposition (CVD) method. They have a unique tubular structure and high aspect ratio, offering exceptional mechanical and electrical properties. VGCFs are often used in advanced composite materials and nanotechnology applications. It is important to note that the choice of carbon fiber type depends on the specific requirements of the application, such as mechanical strength, thermal stability, electrical conductivity, or cost-effectiveness.
- Q: How does carbon impact the prevalence of tsunamis?
- Carbon does not directly impact the prevalence of tsunamis. Tsunamis are primarily caused by seismic activity, such as earthquakes or volcanic eruptions, which are unrelated to carbon emissions. However, rising carbon levels can contribute to global climate change, leading to the melting of polar ice caps and potentially increasing the risk of coastal flooding, which can indirectly amplify the impact of a tsunami.
- Q: Glucose contains resveratrol (C14H12O3) to determine the mass ratio of resveratrol and carbon dioxide of the same quality as carbon dioxide
- They are x and y, containing carbon equal, according to the mass of an element = the mass of a compound * the elementMass fractionFor C14H12O3, the carbon mass fraction is C%=12*14/ (12*14+12+16*3) *100%=73.68%For CO2, the mass fraction of carbon is 12/ (12+16*2) =27.27%There is x *73.68%=y*27.27%So there's X: y =57:154
- Q: The home wants to install electricity to warm the floor, the metal heating cable certainly won't use to have radiation, but is carbon system carbon fiber good or carbon crystal good?
- The metal heating cable radiation is very small, much smaller than your mobile phone, carbon fiber, carbon life of only ten years, did not reach the standard of heating heating industry, the industry standard is 50 years of life, only water heating and heating cable alloy wire current.
- Q: How does carbon impact the prevalence of ocean acidification?
- Climate change is caused by carbon dioxide, a greenhouse gas. When humans release excess carbon dioxide into the atmosphere through activities like burning fossil fuels, a large portion of it is absorbed by the oceans. This absorption leads to a chemical reaction that increases the amount of hydrogen ions in the water, resulting in a decrease in pH levels. We call this process ocean acidification. When carbon dioxide dissolves in seawater, it creates carbonic acid, which then breaks apart into hydrogen ions and bicarbonate ions. The increased concentration of hydrogen ions reduces the availability of carbonate ions, which are essential for shell-forming organisms such as corals, mollusks, and some plankton species. These organisms rely on carbonate ions to construct and maintain their shells or skeletons. As ocean acidification progresses, the saturation level of calcium carbonate, a crucial mineral for shell production, decreases. This makes it more challenging for marine organisms to build their shells, leading to slower growth rates and weaker structures. Under extreme acidification conditions, some organisms like corals and oysters may even experience the dissolution of their shells. The effects of ocean acidification extend beyond shell-building organisms. It disrupts the delicate balance of various species and their interactions within the marine ecosystem. For instance, the reduced availability of carbonate ions can impact the growth and survival of phytoplankton, which are the foundation of the marine food chain. Consequently, this disruption can have a cascading effect on fish populations and other marine organisms. Additionally, ocean acidification can affect the physiological functions of marine organisms, including their reproduction, behavior, and immune systems. Some studies suggest that acidification can impair the ability of certain fish species to detect predators or navigate, making them more susceptible to predation and decreasing their chances of survival. To summarize, human carbon emissions contribute to ocean acidification. The increased concentration of carbon dioxide in the atmosphere is absorbed by the oceans, leading to lower pH levels and reduced availability of carbonate ions. This process has significant implications for shell-building organisms, the marine food chain, and the overall health and biodiversity of our oceans. It is crucial to address carbon emissions and mitigate climate change to minimize the impacts of ocean acidification and safeguard the well-being of marine ecosystems.
- Q: How does carbon affect the fertility of soil?
- Soil fertility relies on carbon, which has a significant impact on various soil properties and processes. The addition of carbon to the soil improves its structure and ability to hold water. Organic matter, abundant in carbon, serves as a food source for microorganisms. These microorganisms play a crucial role in nutrient cycling and soil aggregation as they break down organic matter into simpler compounds. This process releases essential nutrients that plants can readily access. Furthermore, carbon acts as a sponge, preventing the leaching of nutrients like nitrogen and thereby increasing their availability for plants. Additionally, soils rich in carbon have higher cation exchange capacity, enabling them to retain and release nutrients more efficiently. By maintaining and increasing soil carbon levels, we can enhance soil fertility, facilitate plant growth, and support sustainable agricultural practices.
- Q: What type of carbon copy sheet can be printed on? How many copies?
- Printed in carbon free carbon paper, usuallyUpper: whiteMedium: RedNext: yellowMainly depends on how much you want to print.
- Q: What are the effects of carbon emissions on animal populations?
- Animal populations are profoundly affected by carbon emissions, which result in the disruption of ecosystems and the loss of habitats. The rise in carbon dioxide levels in the atmosphere leads to an increase in the Earth's temperature, causing climate change. This change in climate alters the availability of resources like food and water, making survival and reproduction more challenging for animals. Moreover, carbon emissions contribute to the acidification of the ocean. Seawater absorbs carbon dioxide, creating carbonic acid and lowering the ocean's pH. This acidification negatively impacts marine life, especially species that rely on calcium carbonate to build shells or skeletons, such as corals and shellfish. As their habitats become more corrosive, these animals struggle to survive and reproduce, resulting in significant population declines. Additionally, carbon emissions are closely associated with air pollution, which directly and indirectly affects animal populations. High levels of air pollution, particularly nitrogen dioxide and particulate matter, can cause respiratory problems and other health issues in animals. This reduces their fitness and increases mortality rates, ultimately influencing the overall population size. Lastly, carbon emissions contribute to deforestation and the destruction of habitats. Human activities like agriculture and urbanization clear more land, displacing animal populations and forcing them to adapt to fragmented landscapes. This fragmentation limits their movement, access to resources, and increases their vulnerability to predation and other threats. In conclusion, carbon emissions have extensive effects on animal populations, including habitat loss, climate change, ocean acidification, air pollution, and deforestation. These impacts disrupt ecosystems and jeopardize the survival of numerous animal species. It is crucial to address carbon emissions and reduce our carbon footprint to mitigate these detrimental effects and safeguard the Earth's biodiversity.
- Q: What are the effects of carbon emissions on the stability of river systems?
- Carbon emissions have significant effects on the stability of river systems. The release of carbon dioxide and other greenhouse gases into the atmosphere contributes to global warming, which in turn affects the hydrological cycle and leads to changes in river systems. One of the primary effects of carbon emissions on river systems is increased water temperature. As the planet warms, the average temperature of water bodies, including rivers, rises. Higher water temperatures have detrimental impacts on aquatic ecosystems, leading to reduced oxygen levels and increased susceptibility to disease for many species. This can result in the decline or even extinction of certain fish and other aquatic organisms, disrupting the delicate balance of river ecosystems. Furthermore, carbon emissions contribute to the melting of glaciers and polar ice caps, leading to an increase in water volume in rivers. This can cause river systems to experience more frequent and severe flooding events. The excess water can erode riverbanks, leading to the loss of valuable land and infrastructure. It can also result in the displacement of communities living along riverbanks, exacerbating social and economic issues. Additionally, carbon emissions contribute to the acidification of water bodies, including rivers. Increased carbon dioxide in the atmosphere leads to higher levels of dissolved CO2 in rivers, forming carbonic acid when combined with water. Acidic water can harm aquatic life, particularly organisms with calcium carbonate shells or skeletons, such as mollusks and certain types of plankton. This can disrupt the food chain and have cascading effects on the entire river ecosystem. Overall, the effects of carbon emissions on the stability of river systems are profound. Increased water temperatures, flooding events, and acidification pose significant threats to the biodiversity and ecological balance of rivers. It is crucial to mitigate carbon emissions and adopt sustainable practices to preserve the stability and health of these vital ecosystems.
Send your message to us
Calcined Peroleum Coke with FC 98.5% S 0.5%max
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 2000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches