Prime quality square alloy steel billet 155mm Q235
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Structure of Prime quality square alloy steel billet 155mm Q235
Description of Prime quality square alloy steel billet 155mm Q235
1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets.
2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.
3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.
4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.
5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.
Main Feature of Prime quality square alloy steel billet 155mm Q235
Uncoated CR steel sheet
With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.
Galvanized steel sheet(include HDG and EG)
With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.
Precoated steel sheet
With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.
Applications of Prime quality square alloy steel billet 155mm Q235
Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements
Specifications of Prime quality square alloy steel billet 155mm Q235
Product | Prime quality square alloy steel billet 155mm Q235 |
Material Grade | SGCC / SGCH / DX51D+AZ, etc |
Thickness | 0.6-3.0mm |
Width | 500-1500mm |
Tolerance | Thickness: +/-0.02mm , Width:+/-2mm |
Zinc-coating | Z30-150g/m2 |
Technique | Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume |
Surface | Dried, Chromated, Unoiled |
Spangle | Regular spangle , small spangle, zero spangle |
ID | 508MM 610MM |
Coil weight | 1-25MT |
Export package | Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed |
FAQ of Prime quality square alloy steel billet 155mm Q235
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.
- Q: For example, screw plate (PU plate and manganese plate), carbon steel Primeton is what person rolling out?.
- Primeton Pu board generally refers to A3; carbon steel refers to the high quality carbon steel, such as No. 45 steel, 35 steel and so on;
- Q: How are steel billets used in the manufacturing of packaging materials?
- Steel billets are often used in the manufacturing of packaging materials due to their durability and strength. These billets, which are essentially semi-finished steel products, serve as the raw material for various packaging products such as cans, drums, and containers. To manufacture packaging materials, the steel billets are first heated to a specific temperature, allowing them to be easily shaped and molded. They are then passed through a series of rolling mills, where they are flattened and elongated into the desired shape and size. This process, known as hot rolling, helps to improve the mechanical properties of the steel and increase its strength. Once the steel billets have been transformed into the desired shape, they are further processed and coated to enhance their corrosion resistance and provide a smooth surface finish. This coating can be a layer of tin, lacquer, or polymer, depending on the specific packaging requirements. The finished steel packaging materials offer a wide range of advantages. They are strong and durable, providing excellent protection to the products they contain. They are also impermeable to moisture, gases, and light, ensuring the preservation and freshness of the packaged goods. Additionally, steel packaging materials are 100% recyclable, making them an environmentally friendly choice for packaging solutions. In summary, steel billets are an essential component in the manufacturing of packaging materials. By undergoing various shaping, rolling, and coating processes, these billets are transformed into strong and durable packaging products that provide excellent protection and preservation for a wide range of goods.
- Q: How are steel billets used in the production of mining components?
- Steel billets are an integral part of the production process for mining components. These billets serve as the starting point for manufacturing various mining equipment and components. Firstly, steel billets are melted and cast into specific shapes and sizes to meet the requirements of the mining industry. The billets are heated to extremely high temperatures and then poured into molds to form the desired shape. This process is known as casting and allows for the creation of different mining components such as gears, shafts, and valves. Once the steel billets have been cast into the desired shape, they undergo further processing to enhance their strength and durability. This can involve various techniques such as forging, where the billets are subjected to high pressure and heat to improve their mechanical properties. Forged steel components are commonly used in mining applications due to their superior strength and resistance to wear and tear. Additionally, steel billets are often machined to achieve precise dimensions and finishes required for mining components. Machining involves cutting, drilling, and shaping the billets using specialized tools and machinery. This step ensures that the final mining components meet the exact specifications needed for efficient and reliable operation in mining environments. Overall, steel billets are crucial in the production of mining components as they serve as the raw material from which these components are manufactured. The versatility and durability of steel make it an ideal choice for mining applications, where equipment is subjected to demanding conditions. By starting with steel billets and utilizing various manufacturing processes, mining companies can produce high-quality components that are essential for the efficient and safe operation of mining operations.
- Q: What is the difference between steel and billet in the process?
- Square is a square steel hollow, with iron produced; but it is a square steel billet is generally solid, forging or casting molding.
- Q: What is the role of steel billets in the manufacturing of automotive engine components?
- Steel billets are a crucial raw material in the manufacturing of automotive engine components. These billets serve as the starting point for the production process, as they are heated and shaped into various forms such as rods, bars, or sheets. These components, made from steel billets, provide the strength, durability, and heat resistance required for engine parts such as crankshafts, connecting rods, and cylinder heads. In essence, steel billets are the foundation for creating high-quality and reliable engine components that ensure optimal performance and longevity in vehicles.
- Q: How are steel billets used in the production of gears?
- Gears are manufactured using steel billets as the raw material. These billets are semi-finished steel products with a square or rectangular cross-section. They are heated and hot-rolled to shape them into gears. The first step in gear production with steel billets is selecting the appropriate steel grade. This grade should have specific mechanical properties, such as high strength, toughness, and wear resistance. These properties ensure that the gears can withstand the demanding conditions they will face during operation. Once the steel billets are chosen, they are heated to a high temperature to make them malleable and easier to shape. This heating process, known as hot working, allows the steel to be deformed without cracking or fracturing. The billets are then passed through rollers to shape them into gears with the desired dimensions. After the initial shaping, the gears may undergo additional machining operations to refine their shape and improve precision. These operations, like milling, grinding, or hobbing, remove excess material and create the final gear profile. By doing so, they ensure that the gears meet the required tolerances and have smooth surfaces for optimal performance. Once the gears are machined to the desired specifications, they may undergo heat treatment processes like quenching and tempering. These processes enhance the gears' mechanical properties by increasing their hardness and strength. This makes the gears more durable and resistant to wear. Overall, steel billets are essential in gear production as they serve as the starting material for the manufacturing process. Through heating, shaping, machining, and heat treatment, steel billets are transformed into high-quality gears that are strong, durable, and precisely engineered to meet the specific requirements of different mechanical applications.
- Q: How do steel billets contribute to the manufacturing of aerospace components?
- Steel billets contribute to the manufacturing of aerospace components by serving as the raw material for forging, extrusion, or rolling processes. These billets are heated and shaped into various aerospace components, such as engine parts, landing gear, and structural components. The high strength and durability of steel make it an ideal choice for aerospace applications, ensuring the safety and reliability of the components.
- Q: What are the main challenges in the storage of steel billets?
- The main challenges in the storage of steel billets include the need for proper space allocation, adequate handling equipment, protection against corrosion and rust, and maintaining optimal temperature and humidity levels. Additionally, ensuring proper inventory management and efficient transportation of the billets can also be challenging.
- Q: How are steel billets used in the manufacturing of construction scaffolding?
- The manufacturing of construction scaffolding relies heavily on steel billets, which are an indispensable raw material. Initially, the billets are heated and then passed through rolling mills to achieve the desired shape and size for scaffolding components. Once the steel billets have been rolled to the required shape, they undergo further processing to create different scaffolding parts such as tubes, couplers, frames, and planks. These parts are then assembled together to form the scaffolding structure, which provides a secure and stable platform for workers during construction projects at elevated heights. There are several advantages to using steel billets in the manufacturing of construction scaffolding. Firstly, steel is renowned for its exceptional strength and durability, making it an ideal material for scaffolding. Additionally, it is resistant to corrosion and capable of withstanding harsh weather conditions, ensuring the scaffolding remains reliable and safe throughout the construction process. Furthermore, steel scaffolding is highly versatile and can be easily customized to meet various project requirements. By using steel billets, manufacturers can create scaffolding components of different sizes, shapes, and configurations to accommodate diverse construction needs. In conclusion, steel billets play a crucial role in the manufacturing of construction scaffolding. By utilizing these raw materials, scaffolding manufacturers can produce scaffolding structures that are durable, reliable, and customizable, ultimately enhancing safety and efficiency on construction sites.
- Q: What are the different types of surface finish inspection methods for steel billets?
- There are several different types of surface finish inspection methods that can be used for steel billets. These methods are crucial in determining the quality and suitability of the billets for further processing or use. Some of the common surface finish inspection methods for steel billets include: 1. Visual inspection: This is a basic method where the surface of the billet is visually examined for any irregularities, such as cracks, pits, scratches, or any other surface imperfections. It is a quick and cost-effective method but may not be able to detect subtle defects. 2. Magnetic particle inspection: This method involves magnetizing the surface of the billet and applying fine iron particles on it. Any surface cracks or defects will cause a leakage of magnetic field, attracting the iron particles and making them visible under appropriate lighting conditions. 3. Dye penetrant inspection: In this method, a liquid dye is applied to the surface of the billet. The dye penetrates into any surface cracks or defects, and after a certain period, excess dye is removed. A developer is then applied, which draws out the dye from the cracks and defects, making them visible. 4. Ultrasonic testing: This method utilizes high-frequency sound waves that are transmitted through the steel billet. The waves are reflected back when they encounter any surface irregularities, such as cracks or voids. By analyzing the time taken for the waves to return, the size and depth of the defects can be determined. 5. Eddy current testing: This non-destructive testing method uses electromagnetic induction to detect surface defects. An alternating current is passed through a coil, creating a magnetic field. When the coil is near the surface of the billet, any defects will disrupt the magnetic field, causing a change in the electrical impedance. This change is measured and analyzed to identify surface defects. Each of these inspection methods has its advantages and limitations, and the choice of method depends on the specific requirements, the size and shape of the billet, and the level of accuracy desired. By employing these surface finish inspection methods, manufacturers can ensure the quality and reliability of the steel billets before they are further processed or used in various applications.
Send your message to us
Prime quality square alloy steel billet 155mm Q235
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords