• Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars System 1
  • Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars System 2
  • Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars System 3
  • Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars System 4
  • Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars System 5
  • Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars System 6
Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars

Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Angle

Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars 

 

Detailed Informaion

Name

Equal/Unequal Angle Steel Bar

Shape

Equal/Unequal Angle

Standard

GB/ASTM/SAE/AISI/DIN/JIS/EN/BS

Surface Treatment:

Black/Peeling/Polished/Machined  

Delivery Condition:

Hot Rolled or Forged/Peeled or Black Surface

Test

SGS/UT 100% Elements Testing

Certificate:

ISO/Mill Certificate

Service:

24 hours online service /

more than 20 years trading and manufacture 

Quality Assurance:

the third party inspection, such as SGS, BV, TUV…etc. is acceptable

Packaging Details:

Seaworthy Packaging or as per customer's packing instruction

 

Quick Details

Standard:AISI,ASTM,BS,GB,JIS,EN

Size:45*30*4-200*125*18

Length: 6-16m

Technique:  hot rolled 

Grade:SS400, ST37-2, A36, S235JRG1, Q235, Q345 etc.

Type:Equal

Certification:SGS,ISO 

Inspection:accept BV SGS inspect

 

Specification

Specification 

Weight

Specification 

Weight

Leg length*leg length*thickness 

 

Leg length*leg length*thickness 

(kg/m)

(mm)

(kg/m)

(mm)

 

25*25*3

1.124

90*90*8

10.946

25*25*4

1.459

90*90*10

13.476

30*30*3

1.373

100*100*6

9.366

30*30*4

1.786

100*100*7

10.83

40*40*3

1.852

100*100*8

12.276

40*40*4

2.422

100*100*10

15.12

40*40*5

2.976

100*100*12

17.898

45*45*3

2.088

110*110*7

11.928

45*45*4

2.736

110*110*8

13.532

45*45*5

3.369

110*110*10

16.69

50*50*3

2.332

110*110*12

19.782

50*50*4

3.059

125*125*8

15.504

50*50*5

3.77

125*125*10

19.133

50*50*6

4.465

125*125*12

22.696

63*63*5

4.822

125*125*14

26.193

63*63*6

5.721

140*140*10

21.488

63*63*8

7.469

140*140*12

25.522

70*70*5

5.397

140*140*14

29.49

70*70*6

6.406

160*160*10

24.729

70*70*7

7.398

160*160*12

29.391

70*70*8

8.373

160*160*14

33.987

75*75*5

5.818

160*160*16

38.518

75*75*6

6.905

180*180*12

33.159

75*75*7

7.976

180*180*14

38.383

75*75*8

9.03

180*180*16

43.542

75*75*10

11.089

180*180*18

48.634

80*80*6

7.376

200*200*14

42.894

80*80*7

8.525

200*200*16

48.68

80*80*8

9.658

200*200*18

54.401

80*80*10

11.874

200*200*20

60.056

90*90*6

8.35

200*200*24

71.168

90*90*7

9.656

 

 

 

Company Introduction

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

Packaging & Delivery

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Product Show

Low Cost_Various High Quality Equal / Unequal Steel Angle_Angle Steel_Angle Bars

 

FAQ

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok 

Why  choose  us?

Chose happens because of quality, then price, We can give you both. 

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

Where are your Market?

Covering more than 160 countries in the world

 

Q: How does special steel perform in high-speed machining operations?
Special steel is specifically designed to perform well in high-speed machining operations. It has unique properties that make it ideal for cutting, drilling, and shaping at high speeds. Firstly, special steel has excellent thermal conductivity, which means it can effectively dissipate heat generated during the machining process. This is crucial in high-speed operations as excessive heat can cause tool wear and deformation. By efficiently transferring heat away from the cutting edge, special steel helps to prolong tool life and maintain dimensional accuracy. Secondly, special steel has high hardness and strength, which allows it to withstand the intense forces and pressures encountered during high-speed machining. This enables it to maintain its shape and integrity, reducing the chances of tool breakage or deformation. Moreover, its high strength also ensures that the machined parts have excellent durability and resistance to wear. In addition, special steel exhibits good machinability, meaning it can be easily cut and shaped with minimal effort. Its composition and microstructure are optimized for efficient chip formation and removal, ensuring smooth operations and reducing the risk of chip clogging or tool jamming. Furthermore, special steel often contains alloying elements such as chromium, molybdenum, and vanadium, which enhance its resistance to corrosion and wear. This is particularly important in high-speed machining operations, where the cutting tools and workpiece are in constant contact. The improved corrosion and wear resistance of special steel contribute to longer tool life and improved surface finish. Overall, special steel is specifically engineered to excel in high-speed machining operations. Its thermal conductivity, hardness, strength, machinability, and resistance to corrosion and wear make it a preferred choice for applications that require fast and precise metal removal.
Q: How does special steel contribute to the energy storage sector?
Special steel plays a crucial role in the energy storage sector by providing essential components for various energy storage systems. One significant application of special steel is in the manufacturing of batteries, which are essential for storing energy in various forms. Special steel is ideal for battery casings and frames due to its high strength, excellent corrosion resistance, and durability. Battery casings made from special steel can withstand high pressures and protect the internal components from external impacts, ensuring the safety and reliability of the entire energy storage system. Furthermore, special steel is utilized in the production of electrodes, a critical component of batteries. Electrodes require materials that can efficiently conduct electricity while enduring repeated charge and discharge cycles. Special steel, such as stainless steel, possesses excellent electrical conductivity and can withstand the demanding conditions within batteries, making it an ideal choice for electrode manufacturing. Additionally, special steel is employed in the construction of infrastructure for energy storage systems. Steel structures are used to support large-scale energy storage devices like pumped hydro storage facilities and compressed air energy storage systems. These structures must be strong, durable, and resistant to environmental conditions. Special steel provides the necessary strength and corrosion resistance to ensure the longevity and reliability of these energy storage infrastructure projects. In summary, special steel contributes significantly to the energy storage sector by providing essential components for batteries, such as casings and electrodes. It also plays a vital role in the construction of infrastructure for energy storage systems. With its exceptional properties, special steel enhances the safety, efficiency, and durability of energy storage technologies, thereby facilitating the growth and advancement of the renewable energy sector as a whole.
Q: What are the different high-temperature grades of special steel?
There are several different high-temperature grades of special steel that are designed to withstand extreme heat and provide enhanced mechanical properties. Some of the most commonly used high-temperature grades include: 1. Stainless steel 310: This grade is known for its excellent resistance to oxidation at high temperatures. It has a high chromium and nickel content, which provides good corrosion resistance and high strength at elevated temperatures. 2. Inconel 625: Inconel alloys are nickel-based superalloys that are highly resistant to oxidation and corrosion. Inconel 625, in particular, offers excellent strength and toughness at high temperatures, making it suitable for applications in the aerospace and chemical processing industries. 3. Hastelloy X: Hastelloy X is a nickel-chromium-iron-molybdenum alloy that exhibits exceptional strength and oxidation resistance at high temperatures. It is commonly used in gas turbine engines, industrial furnace components, and other high-temperature applications. 4. Alloy 800H: This grade of special steel is an austenitic alloy with high resistance to oxidation, carburization, and nitridation. It is often used in heat exchangers, furnace components, and petrochemical applications. 5. Titanium Grade 5: Although not technically a steel, titanium grade 5 is a high-temperature alloy that offers outstanding strength and corrosion resistance at elevated temperatures. It is commonly used in aircraft engine components, chemical processing equipment, and marine applications. These are just a few examples of the high-temperature grades of special steel available in the market. Each grade is specifically designed to excel in different applications where extreme heat resistance and mechanical properties are required.
Q: What are the main factors affecting the creep rupture strength of special steel?
The main factors affecting the creep rupture strength of special steel can be categorized into several key parameters. 1. Temperature: Creep rupture strength is highly dependent on the temperature at which the steel is operating. Higher temperatures can significantly reduce the creep rupture strength of special steel due to the increased atomic diffusion and dislocation movement, leading to accelerated deformation and eventual failure. 2. Time: Creep rupture strength is also influenced by the time duration of the applied load. Creep is a time-dependent phenomenon, meaning that the longer the steel is subjected to stress, the more likely it is to experience rupture. The relationship between time and creep rupture strength is typically described by a power law equation, where longer durations result in lower rupture strength. 3. Stress Level: The applied stress level is a critical factor affecting creep rupture strength. Higher levels of stress can cause faster deformation and reduce the time to rupture. Therefore, it is important to ensure that the stress level applied to special steel is within the acceptable range to maintain its desired creep rupture strength. 4. Microstructure: The microstructure of special steel plays a crucial role in determining its creep rupture strength. Factors such as grain size, grain boundary characteristics, and the presence of alloying elements can all influence the steel's resistance to creep deformation and rupture. Fine-grained microstructures with a high density of grain boundaries tend to exhibit better creep resistance and higher rupture strength. 5. Composition: The chemical composition of special steel can significantly impact its creep rupture strength. The addition of certain alloying elements, such as chromium, molybdenum, and vanadium, can enhance the steel's high-temperature strength and resistance to creep deformation. These elements form stable carbides, which impede the movement of dislocations and improve the material's creep rupture strength. 6. Heat Treatment: The heat treatment process used to modify the microstructure of special steel can also affect its creep rupture strength. Proper heat treatment can optimize the grain size, distribution of alloying elements, and overall microstructure, resulting in improved creep resistance and higher rupture strength. Overall, the main factors affecting the creep rupture strength of special steel include temperature, time, stress level, microstructure, composition, and heat treatment. Understanding and controlling these parameters is crucial in ensuring the desired performance and reliability of special steel in high-temperature and long-term applications.
Q: What are the different methods of preventing stress relaxation in special steel?
Some of the different methods of preventing stress relaxation in special steel include heat treatment, surface coating or plating, stress relieving, and proper design and engineering of the components. These methods help to minimize the relaxation of stress in the steel, ensuring its performance and durability over time.
Q: How does special steel contribute to the transportation equipment industry?
Special steel plays a crucial role in the transportation equipment industry in several ways. Firstly, special steel alloys are used to manufacture various components of vehicles, such as engine parts, suspension systems, and transmission components. These alloys offer superior strength, durability, and corrosion resistance, ensuring that the vehicles can withstand harsh operating conditions and have a longer lifespan. Moreover, special steel is also employed in the production of railway tracks and infrastructure, contributing to the efficiency and safety of the transportation system. The high-quality steel used in railway tracks ensures stability, reduces maintenance requirements, and enhances the overall performance of the railways. In addition, special steel is utilized in the manufacturing of aircraft components, where precision, reliability, and lightness are of utmost importance. Steel alloys with exceptional mechanical properties are employed in critical parts like landing gear, engine components, and structural elements, ensuring the safety and efficiency of air transport. Furthermore, special steel is vital in the production of ships and marine vessels. The use of corrosion-resistant steel alloys in shipbuilding helps to prevent rusting, prolonging the lifespan of the vessels and reducing maintenance costs. Additionally, the high strength-to-weight ratio of certain steel alloys enables the construction of lighter ships, leading to increased fuel efficiency and reduced emissions. Overall, special steel's unique properties and characteristics make it an indispensable material in the transportation equipment industry. Its contribution to the sector includes enhancing the performance, safety, and durability of vehicles, railways, aircraft, and ships, ultimately improving the efficiency and reliability of transportation systems.
Q: Can special steel be used in the production of surgical implants?
Yes, special steel can be used in the production of surgical implants. Special steel, such as stainless steel, is often preferred for surgical implants due to its high strength, corrosion resistance, and biocompatibility. It is commonly used for various types of implants, including orthopedic, dental, and cardiovascular implants.
Q: How does special steel contribute to improving product safety?
Special steel contributes to improving product safety in several ways. Firstly, special steel is known for its high strength and durability, making it ideal for manufacturing components that need to withstand extreme conditions or heavy loads. This ensures that products made with special steel are less likely to fail or break, reducing the risk of accidents or injuries. Secondly, special steel can be engineered to have specific properties such as corrosion resistance, fire resistance, or impact resistance. By incorporating these properties into the design and production of products, special steel enhances their safety features. For example, in the automotive industry, special steel is used to manufacture reinforced frames and safety components, providing better protection to passengers in case of collisions. Additionally, special steel is often used in critical applications where reliability and precision are paramount, such as medical equipment, aerospace components, or industrial machinery. The high performance and consistency of special steel ensure that these products function as intended, minimizing the chances of malfunctions or failures that could jeopardize safety. Overall, the use of special steel in various industries contributes to improving product safety by enhancing strength, durability, resistance to external factors, and reliability.
Q: How does special steel contribute to the manufacturing of cutting blades?
The manufacturing of cutting blades heavily relies on the use of special steel, which plays a vital role in this process. Cutting blades must possess exceptional strength, durability, and sharpness in order to effectively carry out their intended function. Special steel, also referred to as tool steel, possesses distinctive properties that make it the ideal material for the production of cutting blades. To begin with, special steel boasts remarkable hardness, allowing cutting blades to maintain their sharpness over an extended period of time. Blades made from special steel can endure the wear and tear that occurs during cutting operations. This hardness enables the blades to retain their cutting edge, resulting in a longer lifespan and enhanced cutting performance. Furthermore, special steel provides exceptional toughness, which is crucial for cutting blades. During cutting operations, blades are subjected to high impact and stress. The toughness of special steel helps to absorb these forces and prevents the blades from breaking or chipping. This ensures that the cutting blades can withstand demanding cutting tasks without compromising their performance. Additionally, special steel offers excellent corrosion resistance. Cutting blades frequently come into contact with various materials, including moisture and chemicals. The corrosion resistance of special steel prevents the blades from rusting or corroding, ensuring their longevity and reducing the need for frequent replacements. Moreover, special steel possesses good machinability, making it easier to shape and form into the desired blade design. This enhances the manufacturing process by allowing the production of cutting blades with intricate features and complex shapes. The machinability of special steel enables manufacturers to create blades with precise cutting edges and optimal geometries, resulting in superior cutting performance. In conclusion, special steel significantly contributes to the manufacturing of cutting blades by providing hardness, toughness, corrosion resistance, and good machinability. These properties ensure that cutting blades made from special steel are long-lasting, durable, and capable of delivering exceptional cutting performance in various applications.
Q: What are the requirements for special steel used in marine applications?
Special steel used in marine applications must meet certain requirements to ensure its durability and performance in the harsh marine environment. These requirements typically include high corrosion resistance to withstand exposure to saltwater, excellent strength and toughness to withstand extreme forces and impacts, good weldability for ease of fabrication and maintenance, and low magnetic permeability to avoid interference with electronic equipment. Additionally, the steel must be able to withstand fluctuating temperatures and be resistant to fatigue and stress corrosion cracking to ensure long-term reliability in marine applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords