• Hot Rolled  unequal Angle Steel  for insteel structrure System 1
  • Hot Rolled  unequal Angle Steel  for insteel structrure System 2
  • Hot Rolled  unequal Angle Steel  for insteel structrure System 3
Hot Rolled  unequal Angle Steel  for insteel structrure

Hot Rolled unequal Angle Steel for insteel structrure

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50000 m.t.
Supply Capability:
150000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
PVDF Coated,Black,Bright,Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished
Steel Grade:
HRB400,RHB335,Q235B,Q215B,Q235,Q215,Q195,A53(A,B),20#,10#,SS400-SS490,400 Series,300 Series,200 Series,600 Series
Thickness:
15
Length:
200
Net Weight:
33.7

Product Description:

Specifications of Hot Rolled  unequal Angle Steel  for insteel structrure

1.Standards:GB,ASTM,BS,AISI,DIN,JIS

2. Invoicing on theoretical weight or actual weight as customer request3.Material:GBQ235B,Q345BorEquivalent;ASTMA36;EN10025,S235JR.

4. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

5.Sizes:

 Equal Steel Angle

 

EQUAL ANGLES SIZES

 

a(mm)

a1(mm)

thickness(mm)

length

50

50

3.7---6.0

6M/9M/12M

60

60

5.0---6.0

6M/9M/12M

63

63

6.0---8.0

6M/9M/12M

65

65

5.0---8.0

6M/9M/12M

70

70

6.0---7.0

6M/9M/12M

75

75

5.0---10.0

6M/9M/12M

80

80

6.0---10.0

6M/9M/12M

100

100

6.0---12.0

6M/9M/12M

120

120

8.0-12.0

6M/9M/12M

125

125

8.0---12.0

6M/9M/12M

130

130

9.0-12.0

6M/9M/12M

140

140

10.0-16.0

6M/9M/12M

150

150

10---15

6M/9M/12M

160

160

10---16

6M/9M/12M

180

180

12---18

6M/9M/12M

200

200

14---20

6M/9M/12M

 

6. Material details:

 angle steel

Usage & Applications Hot Rolled Angle Steel

According to the needs of different structures, Angle can compose to different force support component. It is widely used in various building structures and engineering structures such as roof beams,  hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

 

 

Hot Rolled  unequal Angle Steel  for insteel structrure

Hot Rolled  unequal Angle Steel  for insteel structrure

 

Packaging & Delivery of Hot Rolled  unequal Angle Steel  for insteel structrure

1. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 30MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

2. With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.

 

 

 

 

Q: Can steel angles be used for architectural detailing?
Yes, steel angles can be used for architectural detailing. They are commonly used in architectural designs to provide structural support, add aesthetic elements, and create interesting visual effects. Steel angles offer versatility in terms of design possibilities and can be used for various applications such as framing, cladding, and decorative accents in architectural projects.
Q: Can steel angles be used for framing or supporting exterior cladding systems?
Steel angles have the capability to be utilized for the framing or support of exterior cladding systems. In construction, steel angles are widely employed due to their ability to provide structural support and stability. When employed for the framing or support of exterior cladding systems, steel angles deliver both durability and strength, guaranteeing the stability and longevity of the cladding. Frequently, they are employed to establish a framework or support structure for attaching cladding materials, such as siding or panels, to the outer surface of a building. The versatility of steel angles allows for easy customization and fabrication to meet specific design requirements, making them an excellent choice for framing or supporting exterior cladding systems.
Q: How do you design connections for steel angles to concrete?
To design connections for steel angles to concrete, several factors need to be considered. Firstly, the load requirements and type of connection (such as shear, tension, or moment) must be determined. Then, appropriate connection methods like embedded plates, anchor bolts, or post-installed anchors can be selected. The design must also consider the concrete strength, angle size, spacing, and edge distances. Detailed calculations are performed to ensure the connection is safe and meets the applicable design codes and standards. Additionally, factors like corrosion protection and construction feasibility should be considered during the design process.
Q: What are the different types of steel angles used in structural engineering?
Steel angles are commonly utilized in structural engineering for their versatility and strength. They are available in various shapes and sizes, typically made from carbon steel or stainless steel, to suit specific structural applications. The following are some of the types of steel angles frequently used in this field: 1. L-Shaped Angles: These angles, also known as equal leg angles, have equal dimensions for both legs, resulting in a 90-degree angle. They are commonly employed as structural components in building frames, supports, and bracing systems. 2. Unequal Leg Angles: Unlike equal leg angles, these angles have differing lengths for each leg, resulting in an unequal angle. They are often used when a larger load-bearing capacity or specific structural requirements are necessary. 3. Angle Iron: Angle iron is a broad term encompassing various steel angles that have been rolled into a 90-degree angle. It is frequently used as a structural element in construction projects, such as framing, bracing, and supports. 4. Slotted Angles: Slotted angles are a variation of angle iron that feature holes or slots along the length of the angle. These holes allow for flexibility in attaching other structural components or accessories, making them versatile for shelving, racks, and workbenches. 5. Stainless Steel Angles: Stainless steel angles are fabricated from corrosion-resistant stainless steel alloys. They are commonly employed in applications where strength, durability, and resistance to corrosion are crucial, such as in the marine, food processing, and chemical industries. 6. Rolled Steel Angles: Rolled steel angles are produced by rolling steel plates or sheets to form an angled shape. They are widely used in construction projects due to their high strength-to-weight ratio and cost-effectiveness. 7. Structural Steel Angles: Structural steel angles are specifically designed for structural applications, such as supporting beams, columns, and trusses. They are typically manufactured from high-strength carbon steel and are available in various sizes and thicknesses to meet specific load-bearing requirements. In conclusion, the diverse range of steel angles used in structural engineering offers engineers numerous options to design and construct robust and efficient structures. The selection of the appropriate angle depends on factors such as load requirements, structural design, and environmental conditions.
Q: What are the different welding methods used for steel angles?
Steel angles can be welded using various methods, depending on factors such as steel thickness, joint type, and desired outcome. Below are some commonly used welding methods for steel angles: 1. Stick welding, also known as Shielded Metal Arc Welding (SMAW), involves manually feeding a consumable electrode coated in flux into the joint. The flux creates a protective shield around the weld pool. SMAW is versatile and suitable for different joint configurations and thicknesses. 2. Gas Metal Arc Welding (GMAW), commonly referred to as MIG or MAG welding, uses a continuously fed wire electrode through a welding gun. The electrode melts and joins the steel angles together, while a shielding gas protects the weld pool. GMAW is fast and suitable for thin to medium thickness steel angles. 3. Flux-Cored Arc Welding (FCAW) is similar to GMAW, but the wire electrode is filled with flux, eliminating the need for external shielding gas. FCAW is versatile, easy to use, and can be used in various positions. It is commonly used for thicker steel angles and in outdoor applications where wind may affect gas shielding. 4. Gas Tungsten Arc Welding (GTAW), also known as TIG welding, uses a non-consumable tungsten electrode to create an arc. A separate filler metal is manually added to the joint, while a shielding gas protects the weld pool. GTAW produces high-quality, precise welds and is commonly used for thinner steel angles or when aesthetics are important. 5. Submerged Arc Welding (SAW) involves continuously feeding a wire electrode into the joint while covering the weld area with granular flux. The flux acts as a protective medium and prevents atmospheric contamination. SAW is commonly used for thicker steel angles and in applications where high deposition rates are required. These are just a few of the commonly used welding methods for steel angles. Each method has its advantages and limitations, and the choice should be based on project requirements. Consulting with a qualified welding professional is important to determine the most suitable method for a specific application.
Q: How are steel angles protected against fire damage?
Fire-resistant coatings and fireproofing materials are commonly used to protect steel angles from fire damage. These measures aim to prevent or delay the steel from reaching its critical temperature, which can compromise its structural integrity. One popular method of safeguarding steel angles involves applying intumescent coatings. These coatings expand when exposed to high temperatures, creating a protective char layer that insulates the steel and slows down heat transfer. This process effectively hinders the steel from rapidly increasing in temperature, thus enhancing its fire resistance capabilities. Another approach is to utilize fireproofing materials, such as concrete or gypsum-based sprays or boards. These materials act as a barrier between the steel angles and the fire, providing insulation and preventing the heat from reaching the steel. Fireproofing materials are commonly employed in buildings with higher fire resistance requirements, such as tall buildings or industrial facilities. In certain cases, steel angles can be enclosed within fire-rated enclosures for added protection. This entails enclosing the steel angles within fire-rated walls, floors, or ceilings made of materials with exceptional fire resistance properties. These enclosures effectively isolate the steel angles from potential fire sources, adding an extra layer of defense. It is important to acknowledge that the specific fire protection measures for steel angles can vary based on building codes, fire safety regulations, and the intended use of the structure. Consulting with fire protection engineers and adhering to the appropriate guidelines will ensure that the steel angles are adequately shielded against fire damage.
Q: What are the common tolerances for steel angles?
The common tolerances for steel angles vary depending on the specific application and industry standards. However, there are some generally accepted tolerances that are commonly used in the manufacturing and construction industries. For the dimensions of steel angles, the common tolerances are typically ±1/8 inch or ±3mm. This means that the actual dimensions of the angle can deviate by up to 1/8 inch or 3mm from the specified dimensions. These tolerances are usually acceptable for most applications and allow for variations in the manufacturing process. In terms of straightness, steel angles are generally expected to be straight within a certain tolerance. The common straightness tolerance for steel angles is typically specified as a maximum deviation from a straight line over a given length. For example, a common straightness tolerance might be 1/8 inch or 3mm over a 10-foot length. This means that the angle should not deviate more than 1/8 inch or 3mm from a straight line over a 10-foot span. Another important tolerance for steel angles is the squareness or perpendicularity tolerance. This refers to the angle between the two legs of the angle and is typically specified as a maximum deviation from 90 degrees. Common squareness tolerances for steel angles are often ±1 degree or ±0.5 degrees. This means that the angle between the legs should not deviate more than 1 degree or 0.5 degrees from a perfect right angle. It is important to note that these common tolerances are just guidelines and can vary depending on the specific requirements of a project or industry. Additionally, some industries or applications may have more stringent tolerances to ensure precise and accurate angles for their specific needs. Therefore, it is always recommended to consult the relevant standards or specifications for the specific tolerances required for a particular steel angle application.
Q: What is the purpose of using steel angles in construction?
The purpose of using steel angles in construction is to provide structural support and stability. Steel angles are commonly used to reinforce corners, edges, and joints, ensuring the strength and rigidity of the overall structure. They help distribute the load evenly and resist torsional forces, making them essential for the construction of beams, frames, and various structural components.
Q: Can steel angles be used for fencing and gate construction?
Yes, steel angles can be used for fencing and gate construction. Steel angles provide structural support and stability, making them suitable for building sturdy fences and gates. They can be used to create frames, braces, and posts, ensuring durability and security.
Q: How are steel angles installed on concrete structures?
Steel angles are typically installed on concrete structures using anchor bolts. These anchor bolts are drilled into the concrete and then the steel angles are placed over these bolts. Nuts and washers are then tightened onto the anchor bolts to secure the steel angles in place.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords