• Hot Rolled Steel Angle Bars with Lowest Price System 1
  • Hot Rolled Steel Angle Bars with Lowest Price System 2
  • Hot Rolled Steel Angle Bars with Lowest Price System 3
Hot Rolled Steel Angle Bars with Lowest Price

Hot Rolled Steel Angle Bars with Lowest Price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t
Supply Capability:
10000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
GB
Technique:
Hot Rolled
Shape:
L
Surface Treatment:
Dry
Steel Grade:
Q235
Thickness:
3-10mm
Length:
6m/12m
Net Weight:
2.5mt/bundle

Okorder.com is a professional materials & equipment supplier & manufacturer, offers integrated one-stop services including real-time quoting and online cargo tracking. We are funded by CNBM Group, a Fortune 500 enterprise and the largest materials & equipment firm in China.


Product Applications:

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.


Product Advantages:

OKorder's Steel Angles are durable, strong, and resist corrosion.


Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30-45 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing


Product Specifications:

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

Angle Steel


Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25


FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction. We can guarantee the quality!

Q2: The products are invoicing on theoretical weight or on actual weight? 

A2: We can do it in both manners, it’s according to buyer's requirement.

Q3: Can you offer the third part inspection certificates ?

A3: Yes, we can apply third part inspection before shipping, such as SGS, BV, etc .


Images:


Hot Rolled Steel Angle Bars with Lowest Price

Hot Rolled Steel Angle Bars with Lowest Price




Q: How do you prevent buckling of steel angles under compressive loads?
To prevent steel angles from buckling under compressive loads, there are several steps that can be taken: 1. Increasing the section modulus: By broadening or thickening the steel angle, its ability to resist bending can be improved, thus enhancing its resistance to compressive loads without buckling. 2. Increasing the moment of inertia: The moment of inertia, which determines a cross-sectional shape's resistance to bending, can be increased by either adding more material or using a different shape with a greater moment of inertia. This makes the steel angle stiffer and less prone to buckling. 3. Providing lateral support: Lateral support can be provided by incorporating bracing or stiffeners into the steel angle. This helps distribute the compressive load and prevents buckling. The bracing or stiffeners should be designed to withstand the applied loads and prevent any local distortions or deformations. 4. Using thicker or higher strength steel: Thicker steel has a higher resistance to bending, while higher strength steel can bear greater stresses before reaching its yield point. By utilizing thicker or higher strength steel, the steel angle can withstand higher compressive loads without buckling. 5. Properly designing and installing connections: The connections between the steel angle and other structural components should be carefully designed and installed. Sufficient connection details should be provided to ensure proper transfer of the compressive load and adequate support for the steel angle. 6. Taking the effective length factor into consideration: The effective length factor is a parameter that considers the buckling behavior of a member. By accurately incorporating the effective length factor into design calculations, the risk of buckling can be minimized. 7. Conducting a comprehensive structural analysis: It is crucial to conduct a structural analysis to determine the expected compressive loads and potential buckling modes. By utilizing appropriate software or calculations, the necessary measures can be implemented to prevent buckling. In conclusion, preventing buckling of steel angles under compressive loads requires a combination of design considerations, material selection, and proper installation techniques. By following these measures, the structural integrity and safety of steel angles can be ensured in various applications.
Q: How do you calculate the maximum allowable deflection for a steel angle beam?
The maximum allowable deflection for a steel angle beam can be calculated using the formula for deflection in beams, which is based on the beam's length, material properties, and the applied load. The calculation involves determining the moment of inertia of the beam, the modulus of elasticity of the steel, and the applied load. By plugging these values into the formula, the maximum allowable deflection can be determined.
Q: What are the different types of steel angles used in automotive manufacturing?
Automotive manufacturing relies on a variety of steel angles that play a crucial role in designing and constructing automotive structures and parts. Some of the commonly utilized steel angles in this industry include: 1. Equal Angle: This type of steel angle consists of sides of equal length, forming a 90-degree angle. In automotive manufacturing, equal angles find applications in chassis frames, suspension components, and brackets. 2. Unequal Angle: As the name suggests, unequal angles have sides of unequal lengths, creating a 90-degree angle. Automotive manufacturers employ unequal angles to fabricate components with specific dimensions and angles, such as door frames, body reinforcements, and support structures. 3. L Angle: Also known as angle irons, L angles possess two sides of equal length that form a 90-degree angle. They are extensively used in automotive manufacturing for various purposes, including reinforcing panels, mounting brackets, and structural supports. 4. T Angle: Resembling the shape of the letter "T," T angles consist of one long side and one short side forming a 90-degree angle. In automotive manufacturing, T angles play a significant role in joining different components like body panels, fenders, and roof structures. 5. C Angle: Referred to as channel angles, C angles have a C-shaped cross-section. These angles offer structural strength and rigidity, making them suitable for applications such as frame rails, roll cages, and support beams in automotive manufacturing. 6. Z Angle: Z angles feature a Z-shaped cross-section, resembling the letter "Z." They are commonly employed in automotive manufacturing to join and reinforce components like door frames, roof structures, and body reinforcements. These examples merely scratch the surface of the numerous types of steel angles employed in automotive manufacturing. Each type serves a specific purpose and possesses unique properties, such as strength, stability, and flexibility, to meet the diverse requirements of automotive applications.
Q: Can steel angles be used in mining or offshore applications?
Yes, steel angles can be used in mining or offshore applications. They are commonly used in these industries due to their high strength, durability, and corrosion resistance properties. Steel angles are versatile and can be utilized for various purposes such as structural support, framing, and bracing in mining operations or offshore structures.
Q: Can steel angles be used in the construction of industrial chimneys?
Yes, steel angles can be used in the construction of industrial chimneys. Steel angles are commonly used as structural components in various construction projects due to their strength, durability, and versatility. In the case of industrial chimneys, steel angles can be used to provide support and stability to the chimney structure. They can be incorporated into the design to reinforce the chimney's framework, particularly at the corners and joints where additional strength is required. Additionally, steel angles can also be used to create a base or foundation for the chimney, ensuring stability and preventing any potential structural issues. Overall, steel angles are a suitable choice for the construction of industrial chimneys due to their ability to withstand the high temperatures and harsh conditions associated with chimney operation.
Q: Can steel angles be cold-formed or bent to specific shapes?
Yes, steel angles can be cold-formed or bent to specific shapes.
Q: What is the maximum allowable torsional stress for a steel angle?
The maximum allowable torsional stress for a steel angle depends on several factors, including the specific grade of steel, the dimensions and shape of the angle, and the intended application. Steel angles are commonly used in structural applications, such as supporting beams and frames, and they are designed to withstand various types of stresses, including torsional stress. To determine the maximum allowable torsional stress for a steel angle, engineers typically refer to industry standards and codes, such as the American Institute of Steel Construction (AISC) Manual or the European standard EN 10056. These standards provide guidelines and formulas for calculating the maximum allowable torsional stress based on the properties of the steel angle, such as the cross-sectional area, moment of inertia, and modulus of elasticity. It is important to note that the maximum allowable torsional stress is usually specified as a percentage of the yield strength or ultimate tensile strength of the steel. This ensures that the angle can safely withstand torsional loads without undergoing permanent deformation or failure. In practical applications, engineers and designers must carefully analyze the specific requirements and loading conditions to determine the appropriate maximum allowable torsional stress for a steel angle. They consider factors such as the magnitude and direction of the applied torque, the angle's orientation, and any additional loads or constraints that may be present. Ultimately, the maximum allowable torsional stress for a steel angle is a critical parameter in ensuring the structural integrity and safety of a given design. Proper consideration of the steel's properties, industry standards, and specific application requirements is essential for making accurate calculations and selecting an appropriate steel angle that can effectively resist torsional stress.
Q: What is the lifespan of a steel angle?
The lifespan of a steel angle can vary depending on various factors such as the quality of the steel, the environment it is exposed to, and the level of maintenance it receives. However, in general, steel angles are known for their durability and long lifespan. With proper care and regular maintenance, a steel angle can last for several decades or even beyond. The corrosion resistance of the steel, protective coatings, and measures taken to prevent rust and deterioration can significantly extend its lifespan. Furthermore, factors such as load-bearing capacity, structural integrity, and overall design play a crucial role in determining the lifespan of a steel angle. Therefore, it is essential to consider the specific application and consult with professionals to ensure optimal performance and longevity.
Q: Can steel angles be used for scaffolding?
Indeed, scaffolding can make use of steel angles. These angles, frequently utilized in construction, are frequently chosen for their robustness and endurance. When incorporated into a scaffolding framework, they can furnish stability and assistance. By effortlessly connecting and fastening steel angles, a reliable structure can be established, enabling workers to securely access elevated zones during construction or maintenance endeavors. Nevertheless, it is crucial to verify that the steel angles employed for scaffolding satisfy the required safety guidelines and regulations, ensuring the stability and soundness of the scaffolding structure.
Q: How do you handle and install steel angles on a construction site?
To handle and install steel angles on a construction site, one must carefully plan and pay attention to detail. Here is a breakdown of the necessary steps: 1. Site preparation: Before handling steel angles, it is crucial to properly prepare the construction site. This involves clearing debris and obstructions, ensuring a stable and level surface, and taking necessary safety precautions. 2. Measurement and marking: Accurate measurements of the steel angles' dimensions and their placement on the site are essential. Use a measuring tape to determine length, width, and thickness, and mark their intended locations. This guarantees proper alignment and fit during installation. 3. Handling and transport: Steel angles can be heavy, so it is important to use appropriate lifting equipment like cranes, hoists, or forklifts. Ensure that the lifting equipment is rated correctly and operated by trained personnel to prevent accidents or damage to the steel angles. 4. Securing the angles: Once the steel angles are in place, use suitable fasteners such as bolts, screws, or welding to secure them. The choice of fasteners depends on the project's requirements and the load-bearing capacity of the steel angles. Follow manufacturer guidelines and industry standards for proper fastener selection and installation. 5. Alignment and leveling check: After securing the angles, use a level and measuring tools to check their alignment and levelness. This step ensures correct installation and the necessary structural support. 6. Inspection and reinforcement: Thoroughly inspect the installed steel angles to ensure they are free from defects or damages. If any issues are found, take appropriate action to reinforce or replace the angles, maintaining the site's structural integrity. 7. Ongoing maintenance: Regular maintenance is necessary to extend the lifespan of steel angles and prevent corrosion. Follow manufacturer recommendations and periodically inspect the angles to address any issues promptly. In conclusion, handling and installing steel angles on a construction site require careful planning, proper equipment, and adherence to safety guidelines. By following these steps, construction professionals can ensure successful installation, contributing to the overall strength and stability of the structure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords