• Hot Rolled Spring Steel Round Bar 30mm with High Quality System 1
  • Hot Rolled Spring Steel Round Bar 30mm with High Quality System 2
  • Hot Rolled Spring Steel Round Bar 30mm with High Quality System 3
Hot Rolled Spring Steel Round Bar 30mm with High Quality

Hot Rolled Spring Steel Round Bar 30mm with High Quality

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
500 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Spring Steel Round Bar 30mm with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Spring Steel Round Bar 30mm with High Quality is widely used to make the bearing used in automobile, tractor engine, transmission and the wheel. And it also used to make the main bearing for the machine tools, electrical machinery, mining machinery, electric locomotives,mechanical ventilation and high speed of grinding wheel spindle etc

 

Product Advantages:

OKorder's Hot Rolled Spring Steel Round Bar 30mm with High Quality are durable, diversified and qualified.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: 20CrNiMoA 20CrNi2MoA 16Cr2Ni4MoA 12Cr2Ni3Mo5A 20Cr2Ni4A 20Cr2Ni2MoA

Cr4Mo4V Cr15Mo4 W9Cr4V2Mo W18Cr4V W6Mo5Cr4V2 5CrMnMo 60CrMnMoNi 37CrA 55SiMoVA etc

Certificates: ISO, SGS, BV, CIQ

Length:6m 8m 9m 12m

Packaging: Packed in bundles with standard export sea-worthy package or as customer require

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: How many types of bearing steel that OKorder.com can supply?

A4: Two types, carbon spring steel and alloy spring steel

 

Images:

 

Q: What are the different quality control measures for special steel production?
Some of the different quality control measures for special steel production include strict material sourcing and selection, thorough testing and inspection during the manufacturing process, adherence to specific industry standards and specifications, regular calibration and maintenance of equipment, proper handling and storage of finished products, and continuous monitoring and improvement of overall production processes.
Q: How is shock-resistant alloy steel used in the production of impact-resistant parts?
Shock-resistant alloy steel is used in the production of impact-resistant parts to enhance their durability and toughness. This type of steel is specifically designed to withstand high impact forces, making it ideal for applications where parts are subjected to intense shock or sudden impact loads. By incorporating shock-resistant alloy steel into the manufacturing process, impact-resistant parts can better absorb and distribute the energy from impacts, thereby reducing the risk of damage or failure.
Q: How does special steel contribute to the food processing industry?
Special steel contributes to the food processing industry by providing critical equipment and tools that ensure hygiene, efficiency, and safety in food production. It is used to manufacture high-quality blades, knives, and cutting tools that enable precise and clean cuts, reducing the risk of contamination. Additionally, special steel is utilized in the construction of food processing machinery and equipment, such as mixers, grinders, and conveyors, ensuring durability and resistance to corrosion. Its exceptional strength and heat resistance also make it suitable for applications like food storage and transportation, maintaining the integrity and quality of the products throughout the supply chain. Overall, special steel plays a crucial role in enhancing productivity, maintaining food safety standards, and improving the overall quality of food processing operations.
Q: What are the different methods of measuring the hardness of special steel?
Measuring the hardness of special steel can be done using various methods. These methods can be divided into two main categories: destructive and non-destructive testing. 1. One widely used destructive testing method is the Rockwell Hardness Test. This method measures the depth of penetration of an indenter into the steel surface. It provides a hardness value based on the steel's resistance to indentation. The Rockwell hardness test is a simple and quick method that requires minimal sample preparation. 2. Another destructive testing method is the Brinell Hardness Test. This method involves applying a known load to a hardened steel ball and measuring the diameter of the resulting indentation on the steel surface. The hardness value is determined based on the ratio of the applied load to the surface area of the indentation. 3. The Vickers Hardness Test is a micro-indentation test that uses a diamond pyramid-shaped indenter. It measures the diagonal length of the indentation left on the steel surface and calculates the hardness value based on the applied load. 4. The Knoop Hardness Test, similar to the Vickers test, is a micro-indentation method using a diamond pyramid-shaped indenter. However, instead of measuring the diagonal length of the indentation, it measures the length of the long axis. This test is particularly useful for measuring the hardness of thin steel samples or steel coatings. 5. For non-destructive testing, the Ultrasonic Hardness Test analyzes the propagation of ultrasonic waves through the steel to determine its hardness. The hardness value is determined based on the correlation between the velocity of the waves and the steel's hardness. 6. The Magnetic Hardness Test is another non-destructive testing method that utilizes magnetic properties. It involves applying a magnetic field to the steel and measuring the magnetic response. The hardness value is determined based on the correlation between the magnetic response and the steel's hardness. It's important to consider that each method has its own advantages and limitations. The choice of method depends on factors such as the type of steel, required accuracy, sample size, and available equipment and expertise.
Q: What are the different standards and specifications for special steel?
There are several standards and specifications for special steel, which vary depending on the specific type and application of the steel. Some common standards include AISI (American Iron and Steel Institute), ASTM (American Society for Testing and Materials), EN (European Norm), and JIS (Japanese Industrial Standards). These standards define the chemical composition, mechanical properties, and manufacturing processes required for special steel to meet certain quality and performance standards. Additionally, there may be specific specifications for different industries or applications, such as aerospace, automotive, or construction, that further define the requirements for special steel.
Q: How does tool steel maintain its hardness at high temperatures?
Tool steel maintains its hardness at high temperatures primarily due to its high carbon content and the presence of other alloying elements. The carbon in tool steel forms hard and wear-resistant carbides, which help retain hardness even at elevated temperatures. Additionally, alloying elements such as chromium, tungsten, molybdenum, and vanadium contribute to the formation of secondary carbides, which further enhance the steel's resistance to softening and maintain its hardness under high heat conditions.
Q: What are the properties of special steel?
Special steel has a high level of strength, durability, and resistance to corrosion. It also exhibits excellent heat resistance, hardness, and toughness, making it suitable for various applications in industries like aerospace, automotive, and construction. Additionally, special steel often possesses specific properties such as magnetic, electrical, or wear resistance, depending on its composition and treatment.
Q: What is the role of alloying elements in special steel?
The role of alloying elements in special steel is to enhance its properties, such as strength, hardness, corrosion resistance, and heat resistance. These elements are added to the steel during the manufacturing process to create alloys with specific characteristics required for various applications. Alloying elements can alter the microstructure of the steel, improving its performance and making it suitable for specialized uses in industries like aerospace, automotive, construction, and oil and gas.
Q: Can special steel be used in the manufacturing of sports equipment?
Sports equipment can benefit from the use of special steel, which is a specific type of steel engineered to possess certain properties. These properties, including high strength, durability, corrosion and wear resistance, and the ability to withstand extreme conditions, make special steel suitable for various specialized applications. In the production of sports equipment, special steel can be utilized in different ways. For instance, it can be employed to create the shafts of golf clubs or tennis rackets. The high strength and stiffness of special steel are crucial for ensuring optimal performance in these items. Moreover, special steel can be used in the construction of bicycles, where its lightweight yet strong properties are highly desirable. Furthermore, special steel can be applied to manufacture accessories for sports equipment, such as hooks, buckles, or fasteners. These components often require high tensile strength and corrosion resistance, which can be provided by special steel. By using this type of steel, the longevity and reliability of the equipment can be ensured. In conclusion, special steel can be used in the manufacturing of sports equipment to enhance performance, durability, and overall quality. Its unique properties make it a suitable choice for improving various aspects of sports equipment.
Q: What are the different methods for improving the heat resistance of special steel?
There are several methods for improving the heat resistance of special steel. One common approach is alloying, where additional elements are added to the steel composition to enhance its resistance to heat. Another method is heat treatment, which involves subjecting the steel to specific heating and cooling processes to alter its microstructure and improve its ability to withstand high temperatures. Additionally, surface treatments such as nitriding or coating can be used to enhance the heat resistance of special steel by forming a protective layer on its surface.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords