• Hot Rolled Spring Steel Round Bar 18mm with High Quality System 1
  • Hot Rolled Spring Steel Round Bar 18mm with High Quality System 2
  • Hot Rolled Spring Steel Round Bar 18mm with High Quality System 3
Hot Rolled Spring Steel Round Bar 18mm with High Quality

Hot Rolled Spring Steel Round Bar 18mm with High Quality

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
500 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Spring Steel Round Bar 18mm with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Spring Steel Round Bar 18mm with High Quality is widely used to make the bearing used in automobile, tractor engine, transmission and the wheel. And it also used to make the main bearing for the machine tools, electrical machinery, mining machinery, electric locomotives,mechanical ventilation and high speed of grinding wheel spindle etc

 

Product Advantages:

OKorder's Hot Rolled Spring Steel Round Bar 18mm with High Quality are durable, diversified and qualified.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: 20CrNiMoA 20CrNi2MoA 16Cr2Ni4MoA 12Cr2Ni3Mo5A 20Cr2Ni4A 20Cr2Ni2MoA

Cr4Mo4V Cr15Mo4

Certificates: ISO, SGS, BV, CIQ

Length:6m 8m 9m 12m

Packaging: Packed in bundles with standard export sea-worthy package or as customer require

 

FAQ:

Q1: How soon can we receive the product after purchase?

A1: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q1: How many types of bearing steel that OKorder.com can supply?

A2: Two types, carbon spring steel and alloy spring steel

 

Images:

 

Q: What is the hardness range of special steel?
The hardness range of special steel typically varies between 20 and 70 HRC (Rockwell Hardness Scale).
Q: What are the different methods of measuring the hardness of special steel?
There are several methods available for measuring the hardness of special steel. These methods can be categorized into two main categories: destructive and non-destructive testing. 1. Rockwell Hardness Test: This is a widely used destructive testing method that measures the depth of penetration of an indenter into the steel surface. The Rockwell hardness test provides a hardness value based on the resistance of the steel to indentation. It is a simple and quick method that requires minimal sample preparation. 2. Brinell Hardness Test: Another destructive testing method, the Brinell hardness test, involves applying a known load to a hardened steel ball and measuring the diameter of the indentation left on the steel surface. The hardness value is determined based on the ratio of the applied load to the surface area of the indentation. 3. Vickers Hardness Test: This is a micro-indentation test that utilizes a diamond pyramid-shaped indenter. The Vickers hardness test measures the diagonal length of the indentation left on the steel surface and calculates the hardness value based on the applied load. 4. Knoop Hardness Test: Similar to the Vickers test, the Knoop hardness test is a micro-indentation method that uses a diamond pyramid-shaped indenter. However, instead of measuring the diagonal length of the indentation, it measures the length of the long axis. This test is particularly useful for measuring the hardness of thin steel samples or steel coatings. 5. Ultrasonic Hardness Test: This non-destructive testing method measures the hardness of steel by analyzing the propagation of ultrasonic waves through the material. The hardness value is determined based on the correlation between the velocity of the waves and the hardness of the steel. 6. Magnetic Hardness Test: This non-destructive testing method utilizes magnetic properties to measure the hardness of steel. It involves applying a magnetic field to the steel and measuring the magnetic response. The hardness value is determined based on the correlation between the magnetic response and the hardness of the steel. It is important to note that each method has its advantages and limitations, and the choice of method depends on factors such as the type of steel, the required accuracy, the sample size, and the available equipment and expertise.
Q: What are the factors that affect the machinability of special steel?
The factors that affect the machinability of special steel include the composition and microstructure of the steel, hardness and strength of the material, cutting tool material and geometry, cutting speed and feed rate, coolant or lubrication used during machining, and the presence of any impurities or surface defects on the steel.
Q: How does special steel contribute to the manufacturing of cutting tools?
Due to its unique properties and characteristics, special steel plays a crucial role in the manufacturing of cutting tools. Tool steel, also known as special steel, exhibits high hardness, enabling it to withstand the tremendous forces and stress exerted during cutting operations, preventing quick deformation or wear of the cutting tools and ensuring their longevity and efficiency. In addition, special steel possesses excellent wear resistance, minimizing the wear and tear on the tools subjected to constant friction and abrasion. This improves the tool's lifespan, reducing the need for frequent replacements and enhancing cost-effectiveness in the manufacturing process. Furthermore, special steel offers superior heat resistance, maintaining its hardness and integrity even under high temperatures. This allows cutting tools to perform consistently and precisely, even in extreme heat conditions, preventing thermal degradation and loss of hardness. Moreover, special steel used in cutting tool manufacturing exhibits excellent toughness and strength, enabling the tools to endure heavy loads and impacts without fracturing or chipping. The combination of hardness, wear resistance, heat resistance, toughness, and strength provided by special steel ensures the durability and reliability of cutting tools, allowing them to perform efficiently and accurately. Overall, special steel significantly contributes to the manufacturing of cutting tools, providing the necessary properties to withstand demanding cutting conditions. Its high hardness, wear resistance, heat resistance, toughness, and strength ensure that cutting tools remain sharp, durable, and efficient, enhancing productivity and precision in various industries, including automotive, aerospace, and manufacturing.
Q: What are the different annealing techniques used for special steel?
There are several annealing techniques used for special steel, including full annealing, process annealing, and stress relief annealing. Full annealing involves heating the steel to a temperature above its critical point and then slowly cooling it, resulting in a refined grain structure and improved mechanical properties. Process annealing is a similar technique used to soften the steel after cold working or hot working processes. Stress relief annealing is used to reduce residual stresses in the steel by heating it to a temperature below its critical point and then gradually cooling it. These different annealing techniques are employed based on the specific requirements of the special steel and the desired outcome.
Q: Can special steel be used in the plastic manufacturing industry?
Yes, special steel can be used in the plastic manufacturing industry. Special steel is often used for making molds and dies, which are critical components in the plastic manufacturing process. These molds and dies need to be strong, durable, and able to withstand high temperatures and pressures. Special steel, such as tool steel or stainless steel, can provide the necessary properties to ensure the quality and longevity of plastic manufacturing equipment.
Q: What are the common heat treatment methods used for special steel?
The common heat treatment methods used for special steel include annealing, normalizing, quenching, tempering, and hardening.
Q: How does special steel contribute to product innovation?
Product innovation is greatly influenced by the use of special steel, which offers various advantages. Firstly, special steel provides superior mechanical properties, including high strength, hardness, and wear resistance. These qualities permit designers and engineers to develop innovative products that can endure higher levels of stress, function in extreme conditions, and have extended lifespans. An excellent illustration of this is the aerospace industry, where special steel is frequently employed to manufacture lightweight yet robust components that enhance fuel efficiency and overall aircraft performance. Furthermore, special steel can be customized to possess specific attributes such as corrosion resistance, heat resistance, or magnetic properties. This enables the creation of groundbreaking products capable of operating in demanding environments like marine structures, power plants, or electronic devices. For instance, in the medical field, special stainless steel alloys are extensively used to produce implants and surgical instruments that are biocompatible, long-lasting, and resilient to rigorous sterilization processes. Additionally, special steel can be fabricated with precise dimensions and tolerances, facilitating intricate and complex designs. This fosters product innovation by allowing the production of intricate components such as gears, bearings, or turbine blades, which necessitate high precision and reliability. These advanced designs have the potential to enhance the efficiency, performance, and overall functionality of various products, ranging from automotive engines to wind turbines. Moreover, the versatility of special steel permits its combination with other materials, such as polymers or composites, to create hybrid products with unique properties. This opens up avenues for innovation in various industries, including automotive, construction, and consumer electronics. For example, special steel-reinforced concrete structures exhibit increased robustness and durability, while special steel-reinforced polymers enhance the strength and impact resistance of lightweight components. In conclusion, special steel contributes significantly to product innovation by offering enhanced mechanical properties, tailored characteristics, precise dimensions, and compatibility with other materials. These capabilities empower designers and engineers to develop innovative products with improved performance, durability, and functionality, thereby driving advancements across diverse industries.
Q: What is the significance of alloying elements in special steel?
The significance of alloying elements in special steel is that they enhance the properties and performance of the steel. These elements are added in varying proportions to achieve desired characteristics such as increased strength, improved corrosion resistance, enhanced hardness, better heat resistance, or increased toughness. Alloying elements also play a crucial role in controlling the grain structure, reducing brittleness, and improving the overall mechanical properties of the steel. Thus, alloying elements are essential in tailoring the steel's properties to meet specific industrial applications and requirements.
Q: What are the different methods for improving the wear resistance of special steel?
There are several methods that can be employed to enhance the wear resistance of special steel. These methods include: 1. Alloying: By adding specific alloying elements to the steel composition, such as chromium, vanadium, or molybdenum, the wear resistance can be significantly improved. These alloying elements form carbides within the steel matrix, which increase hardness and provide resistance against wear. 2. Heat treatment: Special steels can undergo various heat treatment processes, such as quenching and tempering, to enhance their wear resistance. Quenching involves rapidly cooling the steel from high temperatures to increase hardness, while tempering is performed to relieve internal stresses and improve toughness. 3. Surface coatings: Applying specialized coatings on the surface of the steel can greatly improve wear resistance. Common coating methods include thermal spray coating, electroplating, and physical vapor deposition. These coatings create a protective layer that resists wear and reduces friction. 4. Shot peening: This mechanical surface treatment involves bombarding the steel surface with small spherical particles, called shot, at high velocities. The impact of the shot induces compressive stress on the surface, which enhances the material's resistance to wear and fatigue. 5. Nitriding: This process involves diffusing nitrogen into the surface of the steel at elevated temperatures. Nitrogen forms nitrides, which significantly increase surface hardness and wear resistance. 6. Cryogenic treatment: By subjecting the steel to extremely low temperatures, typically below -100 degrees Celsius (-148 degrees Fahrenheit), the material undergoes a structural transformation that increases its wear resistance. This process helps to refine the grain structure and improve the material's toughness. 7. Grain refinement: By employing methods like severe plastic deformation or specialized casting techniques, the grain size of the steel can be reduced. Smaller grain sizes result in increased hardness and wear resistance due to improved dislocation movement and reduced grain-boundary sliding. It is important to note that the choice of method for improving wear resistance depends on factors such as the specific application, budget, and desired level of improvement. A combination of these methods may also be utilized to achieve optimal wear resistance in special steel.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords