• high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo System 1
  • high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo System 2
  • high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo System 3
high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo

high quality bearing steel, GCr15, 40Cr, SAE1055, G20CrNiMo

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
500 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications:

1) Grade: Bearing steel SAE 52100 / GCr15 round bars

2) Diameter: 20-500mm

3) Hot rolled/forged, annealed

Application:

Commom steel used to produce balls and rings of bearing. The product has characteristics of uniform-chemical composition, low percentage of harmful elements, high purity, well-distributed carbide, good surface quality. It also has characteristics of wide scope of plastic,stable heat-treatment quality, uniformand high hardness, high wear resistance,high strength of touching fatigue. It has excellent machining property afer spheroidize annealing.

The use of products The product is used to produce balls and rings of bearing. Future Development By rational rolling and cooling process, the product can be spheroidized on-line and can be used in drawing and machining directly by customers. By combining re-spheroidize annealing and re-crystallisation of semi-finished product, the steel wire process can be simplified.

Packaging & Delivery

Mark: Heat No. will be cold stamped and Steel grade, diameter (mm), length (mm), and the manufacturer LOGO and weight (kg) is painted.

Standard seaworthy packing or as customer required

Delivery time: Within 30 days after order is confirmed.

Benefits of Bearing Steels:

Cleanliness and freedom from objectionable microscopic slag type inclusions.

Shallow decarburized surface

Dimensional accuracy and excellent micro-structure uniformity.

Our Advantages:

Fast delivery

Non-standard sizes and made-to-order

Small min order quantity

Economical Pricing

Quality confirming to International Standards

Material Test Certificates for Quality Assurance

Technical Qualified After Sales

Excellent Delivery Conditions.

 

Q:How does special steel perform in high-stress environments?
Special steel is specifically designed to perform exceptionally well in high-stress environments. Its unique composition and manufacturing process make it highly resistant to various forms of stress, such as mechanical, thermal, and chemical stress. One of the key properties of special steel is its high tensile strength, which allows it to withstand immense pressure without deformation or failure. This strength is achieved through the addition of alloying elements, such as chromium, nickel, and molybdenum, which enhance its structural integrity and toughness. The presence of these elements also increases the steel's resistance to corrosion and oxidation, making it more durable and reliable in harsh environments. Moreover, special steel exhibits excellent fatigue resistance, enabling it to withstand repetitive and cyclic loading without developing cracks or fractures. This property is crucial in high-stress environments where components are subjected to constant vibrations or cyclic loading, such as in aerospace, automotive, and industrial applications. In addition to its mechanical properties, special steel is also highly resistant to extreme temperatures. It can maintain its strength and integrity even at elevated temperatures, making it suitable for applications in high-temperature environments such as power plants, furnaces, and chemical processing industries. Furthermore, special steel has excellent wear resistance, which enables it to withstand abrasive conditions, such as those encountered in mining, construction, or manufacturing processes. This reduces the need for frequent maintenance or replacement, resulting in cost savings and increased productivity. Overall, special steel's exceptional performance in high-stress environments can be attributed to its unique combination of strength, durability, corrosion resistance, fatigue resistance, temperature resistance, and wear resistance. Its ability to withstand extreme conditions makes it an ideal choice for critical applications where reliability and safety are paramount.
Q:Can special steel be used in the manufacturing of tools?
Yes, special steel can be used in the manufacturing of tools. Special steels, such as high-speed steel, tool steel, and alloy steel, are specifically designed to have exceptional strength, hardness, and durability properties. These characteristics make special steel ideal for tool manufacturing, as it can withstand high temperatures, resist wear and corrosion, and provide the necessary toughness required for various cutting, shaping, and drilling applications.
Q:How is high-temperature tool steel used in the production of hot work tools?
High-temperature tool steel is used in the production of hot work tools due to its excellent heat resistance and ability to maintain hardness at elevated temperatures. It is used to manufacture tools such as dies, molds, and punches that are subjected to extreme heat during processes like forging, extrusion, and die casting. The high-temperature tool steel retains its strength and hardness even at temperatures exceeding 1000°C, ensuring durability and prolonged tool life in demanding hot work applications.
Q:Can special steel be used for manufacturing tools?
Yes, special steel can be used for manufacturing tools. Special steel is often preferred for tool production as it offers superior strength, durability, and resistance to wear and tear. It also allows for the creation of tools with specific properties, such as high heat resistance or corrosion resistance, making it suitable for various applications in industries like automotive, aerospace, and construction.
Q:How does special steel resist deformation under load?
Special steel is designed to resist deformation under load due to its unique composition and manufacturing techniques. One of the key factors that contribute to its resistance is its high strength. Special steel is typically alloyed with elements such as chromium, nickel, and molybdenum, which enhance its mechanical properties and make it stronger than regular steel. This increased strength allows the steel to bear heavier loads without undergoing significant deformation. Additionally, special steel often undergoes specialized heat treatment processes such as quenching and tempering. These processes modify the steel's microstructure, resulting in a fine-grained structure and increased hardness. The fine-grained structure helps to distribute the applied load more evenly throughout the material, reducing the risk of localized deformation. Moreover, special steel can also exhibit exceptional toughness, which means it can absorb a significant amount of energy before fracturing. This toughness is achieved by carefully controlling the steel's chemical composition and manufacturing processes, such as controlled cooling rates during heat treatment. The ability to absorb energy without undergoing deformation further enhances its resistance to load-induced deformation. Furthermore, special steel can possess superior fatigue resistance, allowing it to withstand repeated loading and unloading cycles without undergoing deformation. This is achieved by eliminating impurities and controlling the steel's grain structure, which reduces the initiation and propagation of cracks that can lead to deformation. Overall, the combination of high strength, fine-grained structure, toughness, and fatigue resistance in special steel enables it to resist deformation under heavy loads. These characteristics are carefully engineered and optimized during the manufacturing process to ensure that the steel can withstand the intended applications and loads without undergoing significant deformation.
Q:What are the different types of corrosion-resistant steel?
There are several types of corrosion-resistant steel, including stainless steel, galvanized steel, weathering steel, and nickel alloys. Each of these types has specific properties that make them resistant to corrosion in various environments and applications.
Q:What is the significance of alloying elements in special steel?
Alloying elements in special steel play a crucial role in enhancing its properties and performance. These elements, such as chromium, nickel, manganese, and molybdenum, are added to improve characteristics like strength, hardness, corrosion resistance, and heat resistance. The combination and proportion of alloying elements determine the specific properties of the steel, making it suitable for various applications, such as manufacturing aircraft parts, automotive components, or tools. Overall, alloying elements greatly contribute to the versatility and functionality of special steel.
Q:What are the different methods of testing the quality of special steel?
There are several methods used to test the quality of special steel. 1. Chemical Analysis: This method involves analyzing the composition of the steel to ensure it meets the required chemical specifications. It helps determine the presence and quantity of various elements, such as carbon, manganese, chromium, nickel, and others, which are crucial for achieving specific mechanical properties. 2. Mechanical Testing: Mechanical testing is performed to evaluate the strength, hardness, ductility, and other mechanical properties of special steel. Common tests include tensile testing, which measures the steel's resistance to breaking under tension, and hardness testing, which determines its resistance to indentation or scratching. 3. Non-Destructive Testing (NDT): NDT methods are employed to assess the quality of steel without causing damage. Techniques such as ultrasonic testing, magnetic particle testing, and liquid penetrant testing are used to detect surface and internal defects, cracks, or discontinuities that may affect the steel's integrity. 4. Microscopic Examination: Microscopy is used to examine the microstructure of special steel, allowing for the evaluation of grain size, inclusions, and other structural features. This analysis can provide insights into the steel's properties and potential defects. 5. Corrosion Testing: Special steel often needs to resist corrosion in harsh environments. Various corrosion tests, such as salt spray testing, electrochemical methods, and exposure to corrosive substances, are conducted to assess the steel's resistance to corrosion and determine its suitability for specific applications. 6. Impact Testing: This method involves subjecting the steel to a high-energy impact to assess its toughness and resistance to sudden loading. It helps determine if the steel can withstand sudden shocks or impacts without fracturing. 7. Heat Treatment Analysis: Special steel often undergoes heat treatment processes to enhance its properties. Heat treatment analysis involves examining the microstructure and hardness of the steel after the treatment to ensure it has achieved the desired properties. Overall, the combination of these testing methods helps ensure that special steel meets the required quality standards, ensuring its suitability for various applications, such as construction, automotive, aerospace, and industrial equipment.
Q:What is the tensile strength of special steel?
The tensile strength of special steel can vary depending on its specific composition and manufacturing process. However, special steel is generally known for its high tensile strength, often exceeding 1000 MPa (mega pascals), making it suitable for applications requiring strong and durable materials.
Q:How does special steel contribute to the electronics industry?
Special steel contributes to the electronics industry by providing crucial components and materials that enhance the performance, durability, and efficiency of electronic devices. It is commonly used in the production of circuit boards, connectors, and various electronic components due to its excellent conductivity, heat resistance, and corrosion resistance properties. Additionally, special steel is utilized in the manufacturing of precision tools and equipment used in the production and assembly of electronic devices. Overall, special steel plays a vital role in ensuring the reliability and functionality of electronics, enabling advancements in technology and innovation within the industry.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords