High Heavy and High Quality Bearing Steel GCr15
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering High Heavy and High Quality Bearing Steel GCr15 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
High Heavy and High Quality Bearing Steel GCr15 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's High Heavy and High Quality Bearing Steel GCr15 are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Specifications of High Heavy and High Quality Bearing Steel GCr15
1. Dimensional sizes: Thickness: 14~100mm.Length:3000~5800mm,Diameter :14-500mm
2.Chemical composition:
C | Si | Mn | Cr | Ni | Cu |
Equal or less than | |||||
0.95-1.05 | 0.15-0.35 | 0.20-0.40 | Cr:1.30-1.65 | 0.30 | 0.25 |
3. Grade: SAE51200/ GCr15 / 100cr6
4. Heat Treatment:
Soft annealing: heat to 680-720°C, cool slowly.
Hardness after annealing: Max. 241 HB
Hardening: 820 - 850 °C
Normalizing temperature: 840-880°C
Tempering: 540-680°C
5. Surface requirements: Black, grinding, bright, polish
6. Characters:
1) Comprehensive properties
2) Good performance in cutting and processing after spheroids annealing
3) High hardness and homogenization after quenching and tempering
4) High abrasive resistance and fatigue resistance
7. Payment terms: T/T or L/C at sight
Usage & Applications of Bearing Steel GCr15
Our products have been used in all kinds of areas, such as aviation, aerospace, navigation, nuclear, energy, chemical industry, electronic information, petrochemical, automotive, instrument and meter, Communication ,transportation, and medical instruments, etc. Bearing ring,steel rolling mill ,machinery, 100Cr6 bearing steel ball is widely used in high-speed and low-noise bearing, bicycle, motorcycle, automobile, bags, electronics.
Packaging & Delivery of Bearing Steel GCr15
Mark: Heat No. will be cold stamped and Steel grade, diameter (mm), length (mm), and the manufacturer LOGO and weight (kg) is painted.
Standard seaworthy packing or as customer required
Delivery time: Within 30 days after order is confirmed.
Note:
1. According to national standard (GB) for our products, if not, supply according to national standards (GB) or agreement.
2. We can not only provide electric furnace +LF+VD and electro-slag re-melting (ESR)steel forging materials, but also forging products of piece, bar, etc.
3. Our company is equipped with roll equipment and can provide our customers with roll billets or finished.
4. Please send us your detailed specifications when inquire. We will reply to you ASAP.
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
- Q: How is special steel used in the production of bearings?
- Special steel is used in the production of bearings because it offers superior strength, hardness, and corrosion resistance properties. This type of steel ensures the bearings can handle heavy loads, high speeds, and harsh operating conditions. Additionally, special steel allows for precise machining and ensures accurate dimensions, resulting in durable and reliable bearings used in various industries, including automotive, aerospace, and manufacturing.
- Q: What are the different methods of preventing pitting corrosion in special steel?
- There are several methods available to prevent pitting corrosion in special steel. These techniques aim to protect the steel surface from the corrosive environment and inhibit the formation of pits. Some of the commonly used methods include: 1. Passivation: Passivation involves treating the steel surface with a chemical solution or coating to create a protective oxide layer. This layer acts as a barrier, preventing the penetration of corrosive agents and reducing the risk of pitting corrosion. 2. Alloying: By adding specific alloying elements to the steel composition, its resistance to corrosion can be improved. Elements such as chromium, nickel, and molybdenum are often used as they enhance the steel's ability to form a stable passive film and resist pitting corrosion. 3. Cathodic protection: This method involves using a sacrificial anode or applying an impressed current to the steel surface. By making the steel cathodic, it becomes less susceptible to corrosion as electrons are drawn away from it, preventing the formation of pits. 4. Coatings: Applying a protective coating to the steel surface can effectively prevent pitting corrosion. Coatings such as paint, epoxy, or polymer-based materials act as a physical barrier, shielding the steel from corrosive agents. 5. Environmental control: Controlling the environment surrounding the steel can also help prevent pitting corrosion. This includes measures such as regulating temperature, humidity, and pH levels to ensure they are within acceptable limits and inhibiting the corrosion process. 6. Regular maintenance: Regular inspection and maintenance of the steel surface are crucial for preventing pitting corrosion. Any signs of damage or deterioration should be addressed promptly to prevent further corrosion and potential pitting. It is important to note that the choice of prevention method depends on various factors such as the specific steel composition, the corrosive environment, and the intended application. Proper selection and implementation of these methods can significantly enhance the resistance of special steel to pitting corrosion, ensuring its longevity and performance.
- Q: What are the advantages of using special steel in manufacturing?
- There are several advantages of using special steel in manufacturing. Firstly, special steel has superior strength and durability compared to regular steel, making it ideal for applications that require high levels of toughness and resistance to wear and tear. Additionally, special steel offers better corrosion resistance properties, allowing the manufactured products to withstand exposure to harsh environments or corrosive substances. Moreover, special steel can be tailored to have specific mechanical properties, such as increased hardness or flexibility, allowing manufacturers to create products with precise specifications. Lastly, special steel often exhibits excellent heat resistance, making it suitable for applications that involve high temperatures or extreme thermal conditions. Overall, the use of special steel in manufacturing provides enhanced performance, longevity, and reliability to the end products.
- Q: How does special steel perform in terms of creep resistance at elevated temperatures?
- Special steel is known for its excellent performance in terms of creep resistance at elevated temperatures. Creep refers to the gradual deformation of a material under constant stress at high temperatures over an extended period. Special steel, specifically designed to withstand high temperatures, demonstrates a remarkable ability to resist creep and maintain its structural integrity. The unique composition of special steel, which includes various alloying elements such as chromium, molybdenum, and vanadium, contributes to its exceptional creep resistance. These alloying elements enhance the steel's high-temperature strength, increase its resistance to deformation, and inhibit the formation of detrimental microstructural changes that can occur during creep. Furthermore, special steel undergoes specific heat treatment processes, such as quenching and tempering, which further enhance its creep resistance. These processes help refine the steel's microstructure, resulting in a fine-grained and homogenous material that can resist deformation even under prolonged exposure to high temperatures. The superior creep resistance of special steel makes it a preferred choice in various industries that operate under high-temperature conditions, such as power generation, petrochemical, and aerospace. It allows for extended service life, reduced maintenance, and increased safety in critical applications where failure due to creep deformation could have severe consequences. In summary, special steel exhibits exceptional performance in terms of creep resistance at elevated temperatures. Its unique composition, including alloying elements and specific heat treatment processes, enables it to resist deformation and maintain its structural integrity even under prolonged exposure to high temperatures.
- Q: How is special steel used in the production of precision tools?
- Special steel is used in the production of precision tools due to its exceptional properties, such as high hardness, toughness, and wear resistance. These characteristics allow for the creation of tools with precise cutting edges that can withstand heavy loads and maintain their sharpness for longer periods of time. Additionally, the special steel's ability to resist deformation and retain dimensional stability ensures that precision tools can consistently deliver accurate and precise results, making them essential for various industries like manufacturing, automotive, and aerospace.
- Q: What are the effects of different heat treatment processes on special steel?
- Different heat treatment processes can have significant effects on the properties and performance of special steel. These processes are designed to alter the microstructure of the steel, thereby influencing its hardness, strength, toughness, and other mechanical properties. One commonly used heat treatment process is annealing, which involves heating the steel to a specific temperature and then slowly cooling it down. Annealing helps to relieve internal stresses, improve machinability, and enhance the ductility of the steel. It also refines the grain structure, making the steel more uniform and reducing the risk of cracks or other defects. Another heat treatment process is quenching, where the steel is heated to a high temperature and then rapidly cooled by immersing it in a quenching medium such as oil or water. This process results in the formation of a hardened microstructure, increasing the steel's hardness and wear resistance. However, quenching can also make the steel brittle, so it is often followed by a tempering process. Tempering involves reheating the quenched steel to a lower temperature and holding it there for a specific duration. This process helps to reduce the brittleness caused by quenching and improve the steel's toughness and ductility. The resulting microstructure is a balance between hardness and toughness, making the steel suitable for applications that require both strength and impact resistance. Other heat treatment processes, such as normalizing and stress relieving, can also be used to achieve specific properties in special steel. Normalizing involves heating the steel to a temperature above its critical point and then allowing it to cool in still air. This process refines the grain structure and improves the steel's strength and machinability. Stress relieving, on the other hand, aims to remove residual stresses from the steel by heating it to a temperature below its critical point and then slowly cooling it. In summary, the effects of different heat treatment processes on special steel are manifold. These processes can modify the steel's microstructure, resulting in changes in hardness, strength, toughness, and other mechanical properties. By selecting the appropriate heat treatment process, manufacturers can tailor the steel's characteristics to suit specific applications, ensuring optimal performance and longevity.
- Q: What are the different methods of improving the corrosion resistance of special steel?
- There are several methods available for improving the corrosion resistance of special steel. Some of the commonly used methods include: 1. Alloying: One of the most effective ways to enhance corrosion resistance is by alloying the steel with specific elements. For example, adding chromium to steel forms a protective chromium oxide layer on the surface, which acts as a barrier against corrosion. Other elements like molybdenum, nickel, and copper can also be added to improve corrosion resistance. 2. Surface treatments: Various surface treatments can be applied to the steel to enhance its corrosion resistance. For instance, galvanizing involves coating the steel with a layer of zinc, which protects it from corrosion. Electroplating is another method where a thin layer of a more corrosion-resistant metal, such as nickel or chromium, is deposited onto the steel surface. 3. Passivation: Passivation is a chemical process that removes free iron and other contaminants from the steel surface, creating a passive film that aids in corrosion resistance. This method is commonly used for stainless steel, where a thin layer of chromium oxide is formed by treating the steel with an oxidizing agent like nitric acid. 4. Protective coatings: Applying protective coatings on the steel surface can significantly improve its corrosion resistance. There are various types of coatings available, such as paints, epoxy coatings, and ceramic coatings. These coatings act as a barrier between the steel and the corrosive environment, preventing direct contact and corrosion. 5. Heat treatment: Heat treatment techniques like annealing, quenching, and tempering can modify the microstructure of the steel, enhancing its corrosion resistance. Heat treatment can improve the steel's mechanical properties, reduce residual stresses, and remove impurities, all of which contribute to better corrosion resistance. 6. Design considerations: Proper design and construction techniques can play a crucial role in improving the corrosion resistance of special steel. For example, eliminating sharp corners and crevices where corrosion can occur, using appropriate drainage systems, and ensuring proper ventilation can prevent the accumulation of moisture and corrosive agents. It is worth noting that the selection of the most suitable method depends on the specific application, environment, and desired level of corrosion resistance. A combination of these methods may also be employed to achieve optimal results.
- Q: What industries rely on special steel?
- Several industries heavily rely on special steel due to its unique properties and exceptional performance. One such industry is the automotive sector, where special steel is extensively used in the production of engine components, suspension systems, gears, and various other parts. The aerospace industry is another prominent user of special steel as it requires materials that can withstand high temperatures, extreme pressure, and provide excellent corrosion resistance. Special steel is also essential in the construction industry, particularly for the manufacturing of high-rise buildings, bridges, and infrastructure projects where strength, durability, and resistance to environmental factors are crucial. The energy sector, including oil and gas, relies on special steel for the production of pipelines, drilling equipment, and storage tanks, as it possesses excellent mechanical properties and can withstand harsh operating conditions. Other industries that heavily rely on special steel include manufacturing, machinery, defense, and tooling, where it is used for various applications such as molds, cutting tools, and machine components. Overall, special steel finds extensive usage in industries that demand superior performance, durability, and reliability in their products and equipment.
- Q: What are the common alloying elements in special steel?
- Special steel commonly contains alloying elements such as chromium, nickel, molybdenum, and vanadium. The addition of chromium improves the steel's resistance to corrosion and increases its hardness. Nickel is utilized to enhance the steel's toughness and ability to withstand extreme temperatures. Molybdenum is frequently incorporated to strengthen the steel and improve its resistance to wear and corrosion. Vanadium, on the other hand, is recognized for its capability to increase the steel's hardness and strength, making it ideal for applications that necessitate high durability. These alloying elements are meticulously chosen and included in special steel to attain specific properties and fulfill the distinctive demands of various industries including automotive, aerospace, and construction.
- Q: What are the characteristics of special stainless steel?
- Special stainless steel distinguishes itself from regular stainless steel through its exceptional properties. Some of the notable traits of this type of stainless steel are as follows: 1. Unparalleled Resistance to Corrosion: Unlike regular stainless steel, special stainless steel boasts a higher degree of corrosion resistance. It can endure exposure to harsh surroundings, such as saltwater or acidic substances, without undergoing corrosion or deterioration. 2. Impressive Endurance of High Temperatures: Special stainless steel is engineered to withstand elevated temperatures without compromising its structural integrity. This makes it suitable for industries like aerospace, automotive, and power generation, where extreme heat endurance is essential. 3. Reinforced Strength and Durability: Special stainless steel is commonly alloyed with other elements to enhance its strength and durability. Consequently, it exhibits remarkable resistance to deformation, cracking, and wear, ensuring its longevity and reliability in demanding conditions. 4. Exceptional Mechanical Properties: Special stainless steel possesses outstanding mechanical properties, including high tensile strength, toughness, and ductility. These properties make it an ideal choice for applications that require a high load-bearing capacity, such as structural components and machinery. 5. Distinctive Magnetic Properties: Depending on its composition, special stainless steel can display a range of magnetic properties, varying from non-magnetic to highly magnetic. This versatility enables its use in applications that demand magnetic properties, such as magnetic resonance imaging (MRI) machines or electrical transformers. 6. Hygienic and Easy to Maintain: Special stainless steel is renowned for its hygienic properties, rendering it suitable for applications in the food and healthcare industries. It is non-porous, resistant to bacterial growth, and easy to clean, making it an ideal choice for equipment and surfaces that must meet stringent sanitary standards. 7. Aesthetic Allure: The aesthetic appeal of special stainless steel often leads to its utilization in architectural and design applications. It can be polished to achieve a mirror-like finish, lending it a sleek and contemporary appearance. Moreover, its malleability and weldability allow for limitless creative design possibilities. In conclusion, special stainless steel possesses an array of exceptional properties, encompassing high corrosion resistance, temperature resistance, strength, durability, excellent mechanical properties, unique magnetic properties, hygienic features, and aesthetic appeal. These characteristics position it as the preferred choice for a wide range of industrial, commercial, and domestic applications.
Send your message to us
High Heavy and High Quality Bearing Steel GCr15
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords