• JIN SUJ2 Bearing Steel of CNBM High Quality System 1
  • JIN SUJ2 Bearing Steel of CNBM High Quality System 2
JIN SUJ2 Bearing Steel of CNBM High Quality

JIN SUJ2 Bearing Steel of CNBM High Quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Bearing Steel
Shape:
Steel Round Bar

 

Product Description:

ISO9001 certified
Flexible MOQ
Prompt delivery stock within 7days

MTC DIN10204 

Specifications of Bearing Steel Round Bar

Grade

AISI 52100, ASTM E52100, DIN 1.3505,JIS SUJ2, GCr15

 

Length: 2000-13000mm or as required

Shape

Round Bar

Type

Alloy Steel Bar

Delivery Condition

Black Surface

Material

Bearing Steel

Technique

Hot Rolled

 

Usage and Applications of Bearing Steel Round Bar

 

SAE 52100 Price  is used in gauges and measuring tools, mandrels, cold rolls and flanging rolls, wood and paper processing tools, slitting blades, ball bearings and shear knives.

  

First the famous 1C-1.5Cr steel from which the majority of bearings are made. Its structure is apparently well-understood and the focus is on purity in order to avoid inclusions which initiate fatigue during rolling contact. Then there is the M50 steel and its variants, from which bearings which serve at slightly higher temperatures in aeroengines are manufactured, based on secondary-hardened martensite.

 

Tapered roller bearing are generally used to support combined load mainly consisting of radial load. Their cups are separable for easy assembling ,During mounting and using, radial clearance and axial clearance can be adjusted and preloaded mounting can be made.

 

Packaging & Delivery of Bearing Steel Round Bar

 

Packaging Detail: ASTM 52100 Steel in seaworthy packing or on customer request; Packed in bundles with standard export sea-worthy package or as customer require

Delivery Detail: 45 days after confirmed

Trade terms: FOB, CFR, CIF ou as customer's required

MOQ: 25 tons or at customer's demands. If the quantity is good, the price will be better.

 

Processing of Bearing Steel Round Bar

 

The processing of Bearing Steel Round Bar is hot rolled (strictly control sulphur, phosphorus and non-metallic inclusions content and distribution)

  

All products' chemical composition and specification can be design according to customers' requirement.

 

Note of Bearing Steel Round Bar

1. According to national standard (GB) for our products, if not, supply according to national standards (GB) or agreement.

2. We can not only provide electric furnace +LF+VD and electros lag re-melting (ESR) steel forging materials, but also forging products of piece, bar, etc.

3. Our company is equipped with roll equipment and can provide our customers with roll billets or finished.

4. Please send us your detailed specifications when inquire. We will reply to you ASAP.

5. Certificate of quality is issued in English, in addition the normal terms, production process, the mechanical property (yield strength, tensile strength, elongation and hardness. forged ratio, UT test result, Grain size, heat treatment methods and the sample of is shown on the certificate

 

JIN SUJ2 Bearing Steel of CNBM High Quality

JIN SUJ2 Bearing Steel of CNBM High Quality

 

Q: What are the different methods of surface texturing for special steel?
Surface texturing for special steel can be achieved through various methods, each with its own unique benefits and applications. Among the most commonly used techniques are: 1. Shot blasting: By propelling small metal or ceramic particles at high speeds onto the steel surface, this process effectively eliminates impurities and contaminants. It results in a textured finish that enhances adhesion for coatings and paints. 2. Acid etching: In this method, the steel is submerged in an acidic solution that selectively removes a thin layer of the surface, creating intricate patterns or designs. Acid etching enables the achievement of detailed textures on the steel surface. 3. Mechanical grinding: This technique involves physically grinding and removing material from the steel surface using abrasive tools. The texture achieved can range from smooth to rough, depending on the grit size of the grinding tool. 4. Laser texturing: An advanced approach, laser texturing employs laser technology to produce precise and intricate patterns on the steel surface. This method offers exceptional precision, repeatability, and enables the creation of complex designs that may be challenging to achieve with other methods. 5. Electrochemical etching: By utilizing an electric current, this process selectively dissolves the steel surface, resulting in a textured pattern. Electrochemical etching allows for consistent and controlled textures on the steel surface. Each surface texturing method has its own advantages and limitations. The choice of technique depends on factors such as the desired texture, the specific properties of the special steel, and the intended application.
Q: Can special steel be used in the construction industry?
Yes, special steel can be used in the construction industry. It offers several advantages such as high strength, durability, and resistance to corrosion, making it suitable for various applications in construction, including beams, columns, and reinforced concrete structures. Special steel can also provide cost-effective solutions by reducing the need for additional materials and maintenance.
Q: What are the different power generation grades of special steel?
There are various power generation grades of special steel, such as P91, P92, and P22. These grades are specifically designed to withstand high temperatures and pressures in power generation applications, ensuring the reliability and efficiency of power plants.
Q: How does special steel contribute to the automotive aftermarket industry?
Special steel plays a significant role in the automotive aftermarket industry by offering various advantages that contribute to the overall performance, durability, and safety of vehicles. Firstly, special steel is known for its exceptional strength and durability. This property allows automotive manufacturers and aftermarket suppliers to develop high-performance components and parts that can withstand extreme conditions and heavy usage. Components such as engine parts, suspension systems, and chassis components benefit from the superior strength of special steel, ensuring their longevity and reliability. Additionally, special steel offers excellent corrosion resistance, which is crucial for automotive components exposed to various weather conditions and road environments. By using corrosion-resistant steel, aftermarket suppliers can produce parts that are less prone to rust and degradation, ultimately enhancing the lifespan of vehicles and reducing the need for frequent replacements. Furthermore, special steel enables the production of lightweight components without compromising on strength. With the increasing demand for fuel efficiency and reduced emissions, lightweight materials are highly sought after in the automotive industry. By utilizing special steel, aftermarket suppliers can create lightweight parts that contribute to improved fuel economy and overall performance of vehicles. Moreover, special steel's versatility allows for the development of complex and intricate components, contributing to advancements in vehicle technology. From precision-engineered gears and shafts to specialized parts for electric vehicles, special steel can be tailored to meet specific automotive requirements, supporting the industry's continuous innovation. Lastly, special steel offers cost-effectiveness in the automotive aftermarket industry. Although the initial cost of special steel might be higher than conventional steel, its durability and longevity result in reduced maintenance and replacement costs over time. This benefit is particularly significant for aftermarket suppliers and vehicle owners, as it helps minimize expenses and ensures a higher return on investment. In conclusion, special steel plays a vital role in the automotive aftermarket industry by providing strength, durability, corrosion resistance, lightweight properties, versatility, and cost-effectiveness. These qualities contribute to the overall performance, safety, and longevity of vehicles, making special steel a crucial material in the development of high-quality aftermarket components and parts.
Q: Can special steel be used in the renewable energy industry?
Yes, special steel can be used in the renewable energy industry. Special steel, such as corrosion-resistant or high-strength steel, can be employed in various applications within the renewable energy sector. For instance, it can be used in the manufacturing of wind turbine components, solar panel frames, and hydroelectric infrastructure. The unique properties of special steel make it suitable for withstanding harsh environmental conditions and ensuring long-term durability and performance in renewable energy systems.
Q: What are the properties and characteristics of special steel?
Special steel refers to a category of steel that has unique properties and characteristics, making it suitable for specific applications that require exceptional strength, durability, and resistance to various environmental factors. Some of the properties and characteristics of special steel include: 1. High Strength: Special steel is known for its exceptional strength, allowing it to withstand heavy loads and extreme conditions. This makes it ideal for applications that require structural integrity and durability, such as construction, automotive, and aerospace industries. 2. Excellent Corrosion Resistance: Special steel is often alloyed with elements like chromium and nickel, which enhance its resistance to corrosion and oxidation. This property makes it highly valuable in environments where exposure to moisture, chemicals, or extreme temperatures may cause conventional steel to deteriorate rapidly. 3. Heat Resistance: Special steel is designed to retain its mechanical properties and structural integrity even at high temperatures. It exhibits excellent thermal stability, which makes it suitable for applications involving intense heat, such as power generation, oil and gas industries, and manufacturing processes. 4. Wear Resistance: Special steel is often hardened and treated to enhance its wear resistance. This property allows it to withstand abrasive materials, friction, and erosion, making it suitable for cutting tools, machine parts, and wear-resistant components in heavy machinery. 5. Magnetic Properties: Certain types of special steel exhibit magnetic properties, which make them ideal for applications in the electrical and electronics industries. Examples include electrical transformers, motors, generators, and magnetic shielding. 6. Machinability: Special steel is designed to be easily machinable, meaning it can be shaped, formed, and fabricated into various components with precision. This property is important for industries that require complex and intricate parts that can be efficiently produced. 7. Cost-effectiveness: Despite its unique properties, special steel is often cost-effective compared to other materials with similar performance characteristics. Its long lifespan, resistance to corrosion and wear, and versatility make it a preferred choice for numerous applications, offering a balance between performance and cost. Overall, special steel combines exceptional strength, resistance to corrosion and wear, heat resistance, and magnetic properties, making it a versatile material used in various industries. Its unique properties make it an essential component in applications where standard steel or other materials would not suffice.
Q: How does electrical steel contribute to the production of transformers and motors?
Electrical steel, also known as silicon steel, plays a crucial role in the production of transformers and motors. Its unique magnetic properties, achieved through the addition of silicon, allow for efficient energy transfer and reduction of energy losses. The low core loss and high magnetic permeability of electrical steel enable transformers to convert high voltage electricity into lower voltage levels, and motors to efficiently convert electrical energy into mechanical motion. In essence, electrical steel is the essential material that enables the high efficiency and performance of transformers and motors, making them indispensable components in various electrical applications.
Q: What are the different coating options available for special steel?
Some of the different coating options available for special steel include galvanizing, powder coating, electroplating, and organic coatings such as epoxy or polyurethane. These coatings provide protection against corrosion, enhance durability, and improve the aesthetics of the steel.
Q: What is the role of alloying elements in special steel?
The role of alloying elements in special steel is crucial as their addition enhances the properties and characteristics of the steel. These elements are added in specific quantities and combinations to impart desirable traits such as increased strength, improved corrosion resistance, enhanced hardness, and superior heat resistance. One of the most common alloying elements used in special steel is chromium. Chromium helps in increasing the steel's resistance to corrosion and oxidation, making it suitable for applications in harsh environments. Additionally, it improves the steel's hardness and wear resistance. Another important alloying element is nickel. Nickel increases the steel's toughness, ductility, and strength, making it ideal for applications that require high strength and resilience. It also enhances the steel's resistance to corrosion and improves its ability to withstand high temperatures. Molybdenum is often used as an alloying element in special steel to enhance its strength, hardness, and toughness. It also improves the steel's resistance to corrosion and high-temperature environments. Manganese is another alloying element that contributes to the steel's strength, hardness, and wear resistance. Other alloying elements like vanadium, tungsten, and cobalt are used to further enhance specific properties of special steel. Vanadium, for example, improves the steel's strength, toughness, and wear resistance. Tungsten increases the steel's hardness, strength, and high-temperature resistance. Cobalt enhances the steel's magnetic properties, strength, and resistance to wear and corrosion. In summary, the role of alloying elements in special steel is to improve its properties and performance, making it suitable for specialized applications. By carefully selecting and incorporating these elements, manufacturers can tailor the steel to meet specific requirements, ensuring optimal performance in various industries such as aerospace, automotive, construction, and oil and gas.
Q: What industries commonly use special steel?
Special steel, known as alloy steel as well, finds extensive use in diverse industries owing to its exceptional properties and performance characteristics. Several industries frequently employ special steel, including: 1. Automotive Industry: Special steel is extensively utilized in manufacturing automobile components such as crankshafts, camshafts, gears, and axles. Its exceptional strength, durability, and excellent heat resistance make it suitable for enduring the demanding conditions of the automotive sector. 2. Aerospace Industry: The aerospace industry relies on special steel to manufacture critical components like turbine blades, landing gear, and structural parts. Its ability to withstand high temperatures and maintain structural integrity under extreme conditions is vital for aerospace applications. 3. Oil and Gas Industry: In the oil and gas sector, special steel is crucial for applications like drill bits, valves, pipelines, and offshore platform components. Its corrosion resistance, high strength, and ability to withstand extreme temperatures and pressures make it suitable for these challenging environments. 4. Construction Industry: Special steel serves the construction industry in fabricating structural components, reinforcement bars, and high-rise building frameworks. Its high tensile strength, toughness, and resistance to wear and tear ensure the safety and stability of the structures. 5. Tool and Die Industry: The tool and die sector widely employs special steel in manufacturing cutting tools, molds, dies, and various machine components. Its capability to retain sharpness, resist deformation, and withstand high pressures and temperatures make it indispensable for these applications. 6. Energy Industry: Power generation plants, including nuclear, thermal, and renewable energy facilities, extensively utilize special steel. It is employed in manufacturing turbines, boilers, heat exchangers, and other critical components, thanks to its high temperature and corrosion resistance properties. 7. Medical Industry: In the medical field, special steel plays a crucial role, particularly in surgical instruments and implants. Its biocompatibility, strength, and corrosion resistance make it suitable for applications like joint replacements, dental instruments, and surgical cutting tools. 8. Manufacturing Industry: Various manufacturing processes like machining, forging, and casting widely rely on special steel. It is employed in the production of machine tools, industrial equipment, and heavy machinery components due to its high strength, toughness, and versatility. These examples represent just a fraction of the industries that commonly employ special steel. Its unique properties make it an indispensable material for a wide range of applications where strength, durability, heat resistance, and corrosion resistance are critical factors.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords