• Galvanized Steel Coil Galvanized Steel Sheet  GI System 1
  • Galvanized Steel Coil Galvanized Steel Sheet  GI System 2
  • Galvanized Steel Coil Galvanized Steel Sheet  GI System 3
  • Galvanized Steel Coil Galvanized Steel Sheet  GI System 4
  • Galvanized Steel Coil Galvanized Steel Sheet  GI System 5
  • Galvanized Steel Coil Galvanized Steel Sheet  GI System 6
Galvanized Steel Coil Galvanized Steel Sheet  GI

Galvanized Steel Coil Galvanized Steel Sheet GI

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
5 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Coil
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
0.23mm-1.2mm
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
Square,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Width:
700mm-1250mm
Net Weight:
0.85
Length:
customized

 

Galvanized Steel Coil Galvanized Steel Sheet  GI

Specification of the Galvanized Steel Coil Galvanized Steel Sheet  GI

NAMEPPGIGALVANIZEDGALVALUME/ZINCALUME
CERTIFICATEISO9001:2008
STANDARDEN10142
JIS G3302
GB/T-12754-2006
ASTM A653M
JIS G3302
GB/T2518
EN 10142
ASTM A792M
JIS G3321
JIS G3317
EN 10215
GRADECGCC
CGCH
CGCD1-CGCD3
CGC340-CGC570
DX51D+Z/DX52D+Z/S250GD+Z
S300GD+Z/S350GD+Z/S550GD+Z
SGCC/SGCH/SGCD1-SGCD3/SGC340-SGC570
G2+Z/G3+Z/G250+Z/G300+Z
G350+Z/G550+Z
DX51D+AZ/DX52D+AZ/S250GD+AZ
S300GD+AZ/S350GD+AZ/S550GD+AZ
SGLCC/SGLCD/SGLC300-SGLC570
G2+AZ/G3+AZ/G250+AZ/G300+AZ
G350+AZ/G550+AZ
COATINGRAL COLOURSZ60g/m2 to Z275g/m2AZ30g/m2 to AZ150g/m2
SIZE(0.13mm-1.5mm)X1000mm OR as requirements(0.13mm-4.0mm)X1500mm OR as requirements(0.12mm-4.0mm)X1500mm OR as requirements
TYPESteel coil
Steel sheets/plates
Corrugated steel sheets/plates
Steel coil
Steel sheets/plates
Corrugated steel sheets/plates
Steel coil
Steel sheets/plates
Corrugated steel sheets/plates
TECHNIQUEHot rolled-cold rolled
-galvalume /galvanized
-PPGI/PPGL
Hot rolled-cold rolled
-galvanized
Hot rolled-cold rolled
-galvalume /Aluzinc
SURFACE
TREATMENT
Mini/regular/big/zero spangle,Chromate treatment /chromate-free treatment /untreated unoile/oiled,
TENSION LEVELLER SKIN PASS
anti-fingerprint/un-anti-fingerprint,
Coating,color
Mini/regular/big/zero spangle,Chromate treatment /chromate-free treatment /untreated unoile/oiled,TENSION LEVELLERT SKIN PASS anti-fingerprint/un-anti-fingerprint,Coating
APPLICATIONStructural use ,roofing, commercial use, household appliance, industry, family
Roofs and outside walls of civilian and industrial buildings, garage doors, fencings and window blinds;
Outer clad sheets for washing machine, refrigerator, televi-sion, air conditioner and ventilation system, explosion-proof strip, solar water heater and appliance parts;
Muffler, heat shields of exhaust pipe and catalytic converter, auto parts & accessories under the frame, signboard in high -way;
Electric control cabinet, industrial refrigeration equipment, automatic vending machine;
Wear resistant steel, high- strength - steel plate

Supplier of the Galvanized Steel Coil Galvanized Steel Sheet  GI

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

Galvanized Steel Coil Galvanized Steel Sheet  GI

Galvanized Steel Coil Galvanized Steel Sheet  GI

 

Delivery of the Galvanized Steel Coil Galvanized Steel Sheet  GI

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show

Galvanized Steel Coil Galvanized Steel Sheet  GI

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: What are the properties of nitrogen alloyed steel?
Nitrogen alloyed steel has several unique properties. Firstly, it exhibits increased strength and hardness compared to regular steel due to the presence of nitrogen. This makes it suitable for applications that require high tensile strength and resistance to wear and tear. Additionally, nitrogen alloyed steel demonstrates excellent corrosion resistance, making it ideal for use in environments with exposure to moisture or chemicals. Moreover, it offers good weldability and formability, allowing for ease of fabrication and shaping. Overall, nitrogen alloyed steel offers a combination of strength, durability, and resistance to corrosion, making it a versatile choice for various industrial applications.
Q: How does special steel perform in terms of impact resistance?
Special steel typically performs very well in terms of impact resistance. It is specifically designed to withstand high impact forces without deforming or breaking. This type of steel is often used in applications where strength and durability are crucial, such as in construction, automotive, and aerospace industries. Its superior impact resistance properties make it highly reliable and capable of withstanding heavy loads and sudden impacts.
Q: How does special steel contribute to the aerospace landing gear industry?
The aerospace landing gear industry relies heavily on special steel to ensure safe and efficient aircraft landings. Special steel is essential for providing the required strength, durability, and resistance to extreme conditions. One vital aspect of landing gears is their high tensile strength, as they bear the weight of the aircraft during takeoff, landing, and taxiing. Special steel alloys, such as ultra-high strength steels, are specifically engineered to resist deformation and endure the immense forces exerted on the landing gear. These steels possess remarkable mechanical properties, enabling them to maintain their structural integrity under heavy loads. Additionally, special steel used in aerospace landing gears must exhibit exceptional fatigue resistance to withstand the repeated stress cycles experienced during each landing. Fatigue failure of landing gears can have catastrophic consequences, so the use of high-quality steel ensures an extended service life and reduces the risk of failure. Moreover, special steel alloys used in landing gears must possess outstanding corrosion resistance. Aircraft operate in diverse environments, including humid and salty conditions, which can accelerate corrosion. By utilizing corrosion-resistant steels, the landing gear components can endure these harsh conditions and maintain their performance and safety over time. Furthermore, the unique properties of special steel alloys allow for weight reduction in landing gear components. The aerospace industry constantly strives to decrease aircraft weight to enhance fuel efficiency and performance. Special steel alloys, such as high-strength low-alloy (HSLA) steels, provide the perfect balance between strength and weight, enabling the design of lighter landing gear components without compromising safety or durability. In conclusion, special steel is indispensable to the aerospace landing gear industry due to its ability to provide the necessary strength, fatigue resistance, corrosion resistance, and weight reduction capabilities required for safe and efficient aircraft landings. By utilizing special steel alloys, the industry can ensure the reliability and longevity of landing gear components, thereby contributing to the overall safety and performance of aircraft.
Q: What are the properties of heat-resistant steel?
Heat-resistant steel is known for its ability to withstand high temperatures without undergoing significant deformation or oxidation. It has excellent thermal stability, retaining its strength and hardness even at extreme heat levels. Additionally, heat-resistant steel exhibits low thermal expansion and good thermal conductivity, making it suitable for applications requiring thermal resistance and efficient heat transfer. It also possesses a high melting point, allowing it to maintain its structural integrity even under intense heat. These properties make heat-resistant steel ideal for applications such as furnace components, jet engine parts, and high-temperature industrial processes.
Q: What are the different methods of surface powder coating for special steel?
Some different methods of surface powder coating for special steel include electrostatic spraying, fluidized bed coating, and flame spraying. Electrostatic spraying involves applying a charged powder to the steel surface, which is then cured in an oven. Fluidized bed coating involves dipping the steel into a bed of powder that is heated to a fluidized state, allowing the powder to adhere to the surface. Flame spraying uses a flame to melt and propel the powder onto the steel surface, creating a durable coating.
Q: Can special steel be used in tool manufacturing?
Yes, special steel can be used in tool manufacturing. Special steel refers to a category of steel that has specific properties and characteristics that make it suitable for various applications, including tool manufacturing. Special steel is often alloyed with other elements such as chromium, molybdenum, or vanadium to enhance its strength, hardness, and wear resistance. In tool manufacturing, special steel is commonly used for making cutting tools, drills, dies, molds, and other tooling components. Its high strength and hardness allow it to withstand the demanding conditions of cutting, drilling, and shaping various materials. Special steel also offers excellent resistance to wear, heat, and corrosion, making it ideal for tools that need to maintain their sharpness and performance over prolonged use. Moreover, special steel can be further processed and treated through heat treatment techniques such as quenching and tempering to achieve specific hardness levels and improve its overall performance. This versatility makes special steel a preferred choice for tool manufacturers who prioritize durability, precision, and longevity in their products. Overall, special steel has proven to be a reliable and efficient material in tool manufacturing, enabling the production of high-quality tools that meet the needs of various industries, from automotive and aerospace to construction and manufacturing.
Q: What are the different methods of preventing stress corrosion cracking in special steel?
There are several methods that can be employed to prevent stress corrosion cracking in special steel: 1. Material Selection: Choosing the appropriate steel alloy with enhanced resistance to stress corrosion cracking is crucial. Alloys such as stainless steel, duplex stainless steel, and nickel-based alloys are known for their resistance to this type of corrosion. 2. Surface Treatments: Applying surface treatments like passivation or electroplating can create a protective layer on the steel surface, preventing the entry of corrosive substances and reducing the likelihood of stress corrosion cracking. 3. Stress Relieving: Heat treatment processes like stress relieving can be employed to reduce residual stresses in the steel, which can contribute to stress corrosion cracking. This treatment involves heating the steel to a specific temperature and then slowly cooling it, which helps to minimize the presence of residual stresses. 4. Corrosion Inhibitors: The use of corrosion inhibitors can help to protect the steel from corrosive environments. These inhibitors can be added to the system or applied as a coating on the steel surface, creating a barrier that prevents the corrosive substances from reaching the steel. 5. Environmental Control: Controlling the environment in which the steel is exposed is essential for preventing stress corrosion cracking. Factors such as temperature, humidity, and the presence of corrosive substances should be monitored and controlled to minimize the risk of stress corrosion cracking. 6. Cathodic Protection: Utilizing cathodic protection techniques can help to prevent stress corrosion cracking. This method involves applying a sacrificial or impressed current to the steel, which acts as a cathode and protects the steel from corrosion. 7. Design Considerations: Proper design of the steel structure is crucial in preventing stress corrosion cracking. Factors such as avoiding sharp corners, minimizing stress concentrations, and providing adequate drainage to prevent the accumulation of corrosive substances can significantly reduce the risk of stress corrosion cracking. By employing a combination of these methods, it is possible to effectively prevent stress corrosion cracking in special steel and ensure the longevity and integrity of the structure.
Q: How does special steel perform in nuclear applications?
Special steel is highly valued in nuclear applications due to its exceptional properties and performance. Nuclear reactors operate under extreme conditions, including high temperatures, high pressures, and exposure to radiation. Special steel, also known as nuclear-grade steel or reactor-grade steel, is specifically designed to withstand these demanding conditions. One of the key characteristics of special steel is its excellent strength and toughness. This allows it to resist deformation and fracture even under the intense stress and pressure found in nuclear reactors. Special steel also exhibits superior heat resistance, enabling it to maintain its structural integrity at elevated temperatures. This is crucial for preventing any potential failures or structural damage that could jeopardize the safety and efficiency of the nuclear system. Furthermore, special steel possesses remarkable resistance to corrosion and oxidation. Nuclear reactors contain highly corrosive environments due to the presence of various chemical compounds and high-temperature water or steam. The corrosion resistance of special steel ensures the longevity and reliability of the reactor components, while also minimizing the risk of radioactive material release. In addition, special steel is designed to have low neutron absorption properties. Neutron absorption can lead to the formation of unwanted isotopes, which could interfere with the nuclear reactions or contribute to the production of radioactive waste. By reducing neutron absorption, special steel helps to optimize the performance and efficiency of the nuclear system. Overall, special steel is a critical material in nuclear applications as it provides the necessary strength, heat resistance, corrosion resistance, and low neutron absorption required for safe and efficient operation of nuclear reactors. Its exceptional performance ensures the integrity of the system, minimizes the risk of accidents, and contributes to the overall sustainability of nuclear energy.
Q: How does the cost of special steel compare to regular steel?
The cost of special steel is generally higher compared to regular steel. Special steel is specifically designed and produced to possess exceptional properties and characteristics that regular steel does not have. It undergoes additional processes such as alloying, heat treatment, or specialized manufacturing techniques to enhance its strength, durability, corrosion resistance, and other desirable attributes. These added steps in production increase the overall cost of special steel. On the other hand, regular steel is more readily available and is produced on a larger scale. It is often used for general purposes and applications where high-performance qualities are not required. Regular steel is relatively cheaper due to its lower production costs and wider availability in the market. However, it is important to note that the cost comparison between special steel and regular steel can vary depending on various factors such as the specific type of steel, the quantity being purchased, market conditions, and any additional customization required. Therefore, it is advisable to consult with steel suppliers or specialists to get accurate pricing information based on specific requirements.
Q: What are the future trends and innovations expected in special steel production?
In the future, we can expect several trends and innovations in special steel production. One of the key trends is the development of advanced alloys with improved strength, corrosion resistance, and heat resistance properties. These alloys will be tailored to meet the specific requirements of industries such as automotive, aerospace, and energy. Another trend is the adoption of advanced manufacturing techniques, including additive manufacturing or 3D printing. This technology enables the production of complex geometries and customized components, leading to increased efficiency and reduced material waste. Furthermore, the integration of digital technologies and data analytics will play a significant role in optimizing production processes and improving quality control. Predictive maintenance systems, real-time monitoring, and artificial intelligence-based algorithms will enhance productivity and reduce downtime. Sustainability and environmental concerns will also shape the future of special steel production. There will be a focus on developing greener processes, such as using renewable energy sources and reducing carbon emissions. Additionally, the recycling and reusing of steel will be emphasized to minimize waste and conserve resources. Overall, the future of special steel production will be marked by advanced alloys, additive manufacturing, digitalization, sustainability, and a continued commitment to meeting the evolving needs of various industries.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords