• Galvanized Flat Bar of Q235 with Leigth 6M/12M System 1
  • Galvanized Flat Bar of Q235 with Leigth 6M/12M System 2
  • Galvanized Flat Bar of Q235 with Leigth 6M/12M System 3
Galvanized Flat Bar of Q235 with Leigth 6M/12M

Galvanized Flat Bar of Q235 with Leigth 6M/12M

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m.t.
Supply Capability:
1000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Galvanized Flat Bar of Q235 with Leigth 6M/12M at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Galvanized Flat Bar of Q235 with Leigth 6M/12M are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Galvanized Flat Bar of Q235 with Leigth 6M/12M are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Specifications of Galvanized Flat Bar of Q235 with Leigth 6M/12M

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 12m as following table

3. Sizes:

Galvanized Flat Bar Zinc Thickness:15-80μ

Grade: A36, SS400, Q235, Q195

Standard: ASTM, JIS, GB

Thickness:1.5mm-20mm

Width: 10mm-250mm

Width

Thickness

Width

Thickness

Width

Thickness

(mm)

(mm)

(mm)

(mm)

(mm)

(mm)

8

5-7

50

5-25

200

8-40

10

3-9

55

5-25

220

8-40

12

3-9

60

5-25

250

8-40

13

5-11

65

5-25

260

8-40

14

3-12

70

5-25

270

8-40

15

5-12

75

5-25

280

8-40

16

4-14

80

6-25

290

8-40

18

4-16

85

6-25

300

8-40

20

4-18

90

6-25

310

8-40

22

4-20

95

6-25

320

8-40

24

5-20

100

6-25

330

8-40

25

4-20

105

6-25

340

8-40

28

4-20

110

6-25

350

8-40

30

4-25

120

7-25

360

8-40

32

4-25

125

7-25

370

8-40

35

4-25

130

8-25

380

8-40

36

6-25

140

8-25

390

8-40

38

7-25

150

8-25

400

8-40

40

4-25

160

8-40

45

4-25

180

8-40

5. Material Specifications:

Production  Standard:  GB/T 700-2006

Grade

Chemical composition (%,max)

C

Si

Mn

P

S

Q195

0.12

0.30

0.50

0.035

0.040

Q235A

0.22

0.35

1.40

0.045

0.050

Q235B

0.20

0.35

1.40

0.045

0.045

Q235C

0.17

0.35

1.40

0.040

0.040

Q235D

0.17

0.35

1.40

0.035

0.035

 Q235 is similar to ASTMA36,JIS SS400

 

Usage & Applications of Galvanized Flat Bar of Q235 with Leigth 6M/12M

Widely used for construction,Fabrication , Ship building, Machinery manufacturing, Steel structure

 

 Packaging & Delivery of Galvanized Flat Bar of Q235 with Leigth 6M/12M

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made inChina, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

 4. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

 5. Delivered by container or bulk vessel

 

Production flow of Galvanized Flat Bar of Q235 with Leigth 6M/12M

The process of hot-dip galvanizing results in a metallurgical bond between zinc and steel with a series of distinct iron-zinc alloys. The resulting coated steel can be used in much the same way as uncoated.

A typical hot-dip galvanizing line operates as follows:

  • Steel is cleaned using a caustic solution. This removes oil/grease, dirt, and paint.

  • The caustic cleaning solution is rinsed off.

  • The steel is pickled in an acidic solution to remove mill scale.

  • The pickling solution is rinsed off.

  • A flux, often zinc ammonium chloride is applied to the steel to inhibit oxidation of the cleaned surface upon exposure to air. The flux is allowed to dry on the steel and aids in the process of the liquid zinc wetting and adhering to the steel.

  • The steel is dipped into the molten zinc bath and held there until the temperature of the steel equilibrates with that of the bath.

  • The steel is cooled in a quench tank to reduce its temperature and inhibit undesirable reactions of the newly formed coating with the atmosphere.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Galvanized Flat Bar of Q235 with Leigth 6M/12M

 

Galvanized Flat Bar of Q235 with Leigth 6M/12M

Q: How are steel billets used in the manufacturing of automotive engine components?
Steel billets are an essential raw material used in the manufacturing of automotive engine components. These billets are semi-finished steel products that are cast into specific shapes and sizes. They serve as the building blocks for various engine parts, such as crankshafts, connecting rods, camshafts, and cylinder blocks. Steel billets undergo a series of processes to transform them into engine components. The first step involves heating the billets to a high temperature, making them malleable and ready for forging or machining. Forging is a common method used to shape the billets into desired forms. It involves applying pressure and force to the heated billet to mold it into the required shape, such as the curved shape of a crankshaft. Once the billets have been forged into the desired shape, they undergo further machining processes to refine their dimensions and achieve the desired level of accuracy. This includes drilling, milling, turning, and grinding, which are performed using specialized machinery and tools. Machining ensures that the engine components meet the strict tolerances required for optimal performance and reliability. Steel billets are chosen for their exceptional strength, durability, and heat resistance properties. These characteristics are vital for engine components, as they are subjected to high pressures, temperatures, and loads during operation. Steel's high tensile strength and ability to withstand extreme conditions make it an ideal material for these critical parts. In summary, steel billets play a crucial role in the manufacturing of automotive engine components. Through forging and machining processes, they are transformed into highly precise and durable parts that contribute to the smooth and efficient operation of an engine. The use of steel billets ensures the overall quality and performance of automotive engines, making them an integral part of the manufacturing process.
Q: What are the different surface treatments for improved wear resistance in steel billets?
Steel billets can be subjected to various surface treatments to enhance their wear resistance. These treatments aim to increase the durability and longevity of the steel, making it more resilient against wear and tear. One widely utilized surface treatment method is case hardening. This technique involves heating the steel billets to high temperatures and then rapidly cooling them in a quenching medium, like oil or water. This process results in the formation of a tough outer layer, known as a case, while maintaining a comparatively softer core. The hardened case provides exceptional wear resistance, while the softer core retains toughness and ductility. Nitriding is another surface treatment option for improved wear resistance. This process entails introducing nitrogen into the surface of the steel billets, typically through a gas or plasma-based approach. The nitrogen permeates the steel and forms a hard layer of nitride on the surface. This nitride layer significantly enhances the hardness and wear resistance of the steel, making it suitable for applications requiring high wear resistance. Hard chrome plating is a third surface treatment technique. It involves electroplating a layer of chromium onto the surface of the steel billets. The chromium layer offers excellent wear and corrosion resistance, making it ideal for applications where the steel will be exposed to harsh environments or abrasive substances. Furthermore, advanced surface treatment methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD) can be employed to enhance the wear resistance of steel billets. These processes involve depositing a thin film of a wear-resistant material, like titanium nitride or diamond-like carbon, onto the steel's surface. These thin films create a hard and low-friction surface, improving wear resistance and reducing frictional losses. In summary, these surface treatments present a diverse range of options to improve the wear resistance of steel billets. The choice of treatment depends on factors such as the specific application requirements, desired level of wear resistance, and budget constraints. Seeking guidance from materials experts or surface treatment specialists can aid in determining the most suitable treatment for a particular steel billet application.
Q: What are the different international standards for steel billets?
There are several international standards for steel billets, including the American Society for Testing and Materials (ASTM) standards, the International Organization for Standardization (ISO) standards, and the European Committee for Standardization (EN) standards. These standards define the chemical composition, mechanical properties, and dimensions of steel billets, ensuring their quality and compatibility for various industries and applications worldwide.
Q: What are the different types of steel billet heat treatment processes?
There are several types of steel billet heat treatment processes, including annealing, normalizing, quenching, and tempering. Annealing involves heating the billet to a high temperature and then slowly cooling it to relieve internal stresses and improve its ductility. Normalizing is similar to annealing but involves cooling the billet in still air to achieve a more uniform grain structure. Quenching is a rapid cooling process that involves immersing the billet in a quenching medium, such as water or oil, to achieve high hardness and strength. Tempering follows quenching and involves reheating the billet to a lower temperature to reduce brittleness and enhance toughness.
Q: How are steel billets used in the manufacturing of mining equipment?
Steel billets are used in the manufacturing of mining equipment as they serve as the starting material for various components. These billets are first heated and then shaped into desired forms such as gears, shafts, or frames, which are crucial for the construction of heavy-duty mining machinery. The strength and durability of steel make it an ideal choice for withstanding the harsh conditions and rigorous demands of mining operations.
Q: What are the different types of steel billet reheating furnaces?
There are several different types of steel billet reheating furnaces used in the metal industry. These furnaces are designed to heat steel billets to a specific temperature before they are further processed or shaped into various end products. The main types of steel billet reheating furnaces include: 1. Pusher Type Furnace: This type of furnace uses a pusher mechanism to move the billets through the furnace. The billets are loaded onto a roller conveyor and pushed into the furnace using mechanical pusher plates. As the billets move through the furnace, they are heated by the combustion gases or electrical heating elements. 2. Walking Beam Furnace: In a walking beam furnace, the billets are placed on a series of moving beams or skids. These beams move in a continuous loop, carrying the billets through the furnace. As the billets move, they are heated by the burners or electrical heating elements located above and below the beams. 3. Rotary Hearth Furnace: This type of furnace consists of a rotating hearth on which the billets are placed. The hearth rotates, bringing the billets through different temperature zones within the furnace. The billets are heated by the burners or electrical heating elements located above the hearth. 4. Continuous Furnace: A continuous furnace is a type of furnace where the billets are continuously fed into one end and discharged from the other end. The billets move through the furnace on a conveyor belt or roller conveyor, being heated by the combustion gases or electrical heating elements as they pass through. 5. Walking Hearth Furnace: In a walking hearth furnace, the billets are placed on a hearth that moves in a reciprocating motion. The hearth moves back and forth, bringing the billets through the furnace. The billets are heated by the burners or electrical heating elements located above and below the hearth. Each type of steel billet reheating furnace has its own advantages and is suitable for specific applications. The choice of furnace depends on factors such as the required heating capacity, the size and shape of the billets, the desired temperature profile, and the energy efficiency requirements.
Q: How are steel billets used in the production of agricultural machinery?
The production of agricultural machinery heavily relies on steel billets, which are vital in the manufacturing of different parts and components. These semi-finished metal products serve as the raw material, offering excellent mechanical properties, high strength, and corrosion resistance. To withstand the challenging conditions of agricultural operations, such as uneven terrains and exposure to moisture and chemicals, agricultural machinery like tractors, harvesters, and plows require sturdy and durable structures. Steel billets are the perfect material for constructing these robust structures. Initially, steel billets are melted and cast into a basic shape, usually rectangular or square. Then, they undergo further processing through techniques like forging, rolling, or extrusion to shape them into specific parts needed for agricultural machinery. These parts can include axles, gears, shafts, blades, and brackets. The utilization of steel billets in the production of agricultural machinery guarantees that the final products possess the required strength, durability, and reliability to perform efficiently in farm operations. Steel's inherent properties make it an ideal choice for ensuring the longevity and performance of these machines. Additionally, steel billets offer flexibility in terms of design and customization. Manufacturers can easily modify the shape, size, and dimensions of steel billets during the production process to meet the specific requirements of each machine. This adaptability allows for the creation of more efficient and specialized equipment to cater to various agricultural tasks. In conclusion, steel billets play a critical role in agricultural machinery production by providing the necessary strength and durability for farm operations. Their versatility, strength, and resistance to corrosion make them an ideal choice for manufacturing various components, ensuring the reliability and longevity of these machines in demanding agricultural environments.
Q: What is the typical fatigue strength of a steel billet?
The typical fatigue strength of a steel billet can vary depending on various factors such as the specific grade of steel, the manufacturing process, and any surface treatments applied. However, in general, steel billets can have a fatigue strength ranging from around 200 to 400 megapascals (MPa).
Q: How are steel billets cooled after the manufacturing process?
Steel billets are typically cooled after the manufacturing process through a process known as water quenching. Water quenching involves rapidly cooling the steel billets by immersing them in a water bath or spraying a high-pressure water stream onto the billets. This rapid cooling process helps to control the microstructure of the steel, resulting in desirable properties such as increased strength and hardness. Water quenching is often preferred for steel billets because it allows for efficient and uniform cooling, ensuring consistent quality throughout the billets. Additionally, water quenching is a cost-effective method compared to other cooling methods. However, it is important to note that the cooling process may vary depending on the specific requirements of the steel being manufactured, and alternative cooling methods such as air cooling or oil quenching may also be utilized.
Q: How do steel billets contribute to the mining industry?
The mining industry relies heavily on steel billets, as they play a critical role in the manufacturing of various mining equipment and infrastructure. These semi-finished steel products are used to produce a wide range of tools and machinery necessary for mining activities. One of the primary uses of steel billets in the mining sector is in the creation of mining machinery and equipment. These billets are utilized to construct the structural components of heavy machinery like excavators, bulldozers, and drilling rigs. The strength and durability of steel make it an excellent material choice for these applications, as it can withstand the harsh conditions and heavy loads encountered in mining operations. Steel billets are also essential in the construction of mining infrastructure. The establishment of structures such as conveyor systems, processing plants, and storage facilities is a crucial aspect of mining operations. By using steel billets, the structural elements of these buildings can be fabricated to provide the necessary strength and stability needed to support mining activities. Additionally, steel billets are vital in the manufacturing of mining tools and equipment. Tools like drills, hammers, and picks are made from steel billets due to their strength and hardness. These tools are utilized throughout various mining processes, including exploration, extraction, and mineral processing. Moreover, steel billets contribute to the mining industry by facilitating the transportation of extracted minerals. The production of rail tracks and wagons, both of which are made from steel billets, is necessary for the efficient transportation of minerals from mining sites to processing facilities or ports for export. In conclusion, steel billets are an indispensable component of the mining industry. They support the production of machinery, infrastructure, tools, and transportation systems. With their strength, durability, and versatility, steel billets play a crucial role in driving the growth and efficiency of the mining sector.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords